
Part-of-Speech Tagging and Partial Parsing

Steven Abney

1996

The initial impetus for the current popularity of statistical methods in com-
putational linguistics was provided in large part by the papers on part-of-speech
tagging by Church [20], DeRose [25], and Garside [34]. In contradiction to com-
mon wisdom, these taggers showed that it was indeed possible to carve part-
of-speech disambiguation out of the apparently monolithic problem of natural
language understanding, and solve it with impressive accuracy.
The concensus at the time was that part-of-speech disambiguation could

only be done as part of a global analysis, including syntactic analysis, discourse
analysis, and even world knowledge. For instance, to correctly disambiguate
help in give John helpN versus let John helpV, one apparently needs to parse
the sentences, making reference to the differing subcategorization frames of give
and let. Similar examples show that even world knowledge must be taken into
account. For instance, off is a preposition in I turned off highway I-90, but
a particle in I turned off my radio, so assigning the correct part of speech in
I turned off the spectroroute depends on knowing whether spectroroute is the
name of a road or the name of a device.
Such examples do demonstrate that the problem of part-of-speech disam-

biguation cannot be solved without solving all the rest of the natural-language
understanding problem. But Church, DeRose and Garside showed that, even if
an exact solution is far beyond reach, a reasonable approximate solution is quite
feasible.
In this chapter, I would like to survey further developments in part-of-speech

disambiguation (‘tagging’). I would also like to consider a question raised by the
success of tagging, namely, what piece of the NL-understanding problem we can
carve off next. ‘Partial parsing’ is a cover term for a range of different techniques
for recovering some but not all of the information contained in a traditional
syntactic analysis. Partial parsing techniques, like tagging techniques, aim for
reliability and robustness in the face of the vagaries of natural text, by sacrificing
completeness of analysis and accepting a low but non-zero error rate.

1

1 Tagging

The earliest taggers [35, 51] had large sets of hand-constructed rules for assign-
ing tags on the basis of words’ character patterns and on the basis of the tags
assigned to preceding or following words, but they had only small lexica, pri-
marily for exceptions to the rules. TAGGIT [35] was used to generate an initial
tagging of the Brown corpus, which was then hand-edited. (Thus it provided the
data that has since been used to train other taggers [20].) The tagger described
by Garside [56, 34], CLAWS, was a probabilistic version of TAGGIT, and the
DeRose tagger improved on CLAWS by employing dynamic programming.
In another line of development, hidden Markov models (HMMs) were im-

ported from speech recognition and applied to tagging, by Bahl and Mercer [9],
Derouault and Merialdo [26], and Church [20]. These taggers have come to be
standard. Nonetheless, the rule-based line of taggers has continued to be pur-
sued, most notably by Karlsson, Voutilainen, and colleagues [49, 50, 85, 84, 18]
and Brill [15, 16]. There have also been efforts at learning parts of speech from
word distributions, with application to tagging [76, 77].
Taggers are currently wide-spread and readily available. Those available for

free include an HMM tagger implemented at Xerox [23], the Brill tagger, and the
Multext tagger [8].1 Moreover, taggers have now been developed for a number
of different languages. Taggers have been described for Basque [6], Dutch [24],
French [18], German [30, 75], Greek [24], Italian [24], Spanish [57], Swedish [13],
and Turkish [63], to name a few. Dermatas and Kokkinakis [24] compare taggers
for seven different languages. The Multext project [8] is currently developing
models to drive their tagger for six languages.

1.1 HMM Taggers

The standard tagger is a hidden Markov model whose states are tags or tuples
of tags. HMMs are discussed in considerable detail elsewhere in this book (chap.
2) and in a number of tutorial papers [67, 66, 64], so I will assume familiarity
with them here.
For a bigram tagger, the states of the HMM are tags. Transition probabilities

are probabilities of a tag given the previous tag, and emission probabilities are
probabilities of a word given a tag. The probability of a particular part-of-
speech sequence plus sentence is the product of the transition and emission
probabilities it contains. For example,

1As of this writing, the addresses are hftp:==parcftp.xerox.com/pub/taggeri for the
Xerox tagger, hhttp:==www.cs.jhu.edu/»brilli for the Brill tagger, and hhttp:==issco-
www.unige.ch/projects/MULTEXT.htmli for the Multext tagger.

2

(1)

P

ˆDT NN MD VB

the garbage can smell

!

= P (DT)£
P (NNjDT)P (MDjNN)P (VBjMD)£
P (thejDT)P (garbagejNN)P (canjMD)P (smell jVB)

For a trigram model, states are pairs of tags, and we have for example:

(2)

P

ˆ$,DT DT,NN NN,MD MD,VB

the garbage can smell

!

= P (DT)£
P (NNj$,DT)P (MDjDT,NN)P (VBjNN,MD)£
P (thejDT)P (garbagejNN)P (canjMD)P (smell jVB)

It should be observed that the expansion of the probability in (2) is correct only
under a couple of assumptions. First, we assume that emission probabilities are
conditional only on the second tag in the tag-pair representing a given state.
This justifies writing e.g. ‘P (canjMD)’ in place of ‘P (canjhNN,MDi)’. Second,
we assume that the only transitions with nonzero probability out of a state hfi; fli
are to states hfl; °i for some °. This justifies writing e.g. ‘P (MDjDT,NN)’ in
place of ‘P (hNN,MDijhDT,NNi)’.
With this correspondence between tags and states, the most-likely sequence

of tags can be recovered straightforwardly using the Viterbi algorithm, and
the transition and emission probabilities can be estimated using the forward-
backward algorithm. The error rates reported in the literature range from about
1% to 5%.
Two of the strongest selling points for HMM taggers are their accuracy and

the fact that they can be trained from unannotated text. These are indeed
important advantages of HMM taggers, but at the same time, there are some
points to keep in mind.
If we train an HMM tagger with no hand-coded input at all, it will indeed

succeed at finding a model whose cross-entropy with the corpus is low. However,
the output may have little relation to the part-of-speech assignments we actually
want as output. Getting good performance—as measured by assignment of
the intended tags, not cross-entropy—may require a fair amount of manually
prepared material. Merialdo [62] and Elworthy [29] conduct experiments to
evaluate the effectiveness of forward-backward training, and conclude that the
best performance is obtained by providing large amounts of pre-tagged text,
and that with large amounts of pre-tagged text, forward-backward training can
in fact damage performance rather than improving it.
As concerns accuracy figures—for taggers generally, not just for HMM taggers—

it is good to remember the maxim, “there are lies, damned lies, and statistics.”

3

First, tagger error rates are usually reported as percentage of words erroneously
tagged. In many applications, the sentence is the more relevant unit, and a
single tagging error may lead to failure of the application. Assuming 20-word
sentences and independence of errors, a 4% per-word error rate translates into
a 1¡ :9620 = 56% per-sentence error rate! Or, working backwards, to achieve a
4% per-sentence error rate, we require a per-word error rate of 0.2%.
Second, 4% error sounds good because it is so much bettern than 100%

error. But, in fact, even guessing will do better than 100% error. With a very
simple approach—just tagging each word with its most-frequent tag, regardless
of context—one already reduces error to 10% [22].
A more general, related principle is a law of diminishing returns related to

Zipf’s law. A little effort goes a long way, at first: eliminating a few high-
frequency error types has a big effect on per-token error rates. But the flip side
is that the amount of work needed to make further progress increases exponen-
tially.
Finally, as is true for any evaluation, a fair comparison of techniques is only

possible if they are applied to the same task. In this respect, virtually none of the
reported tagger error rates are comparable. Differences in tagsets, evaluation
texts, and amount of training material can have significant effects on the error
rate. To give a single example, some taggers do not distinguish gerunds from
present participles, yet that distinction is a significant source of errors for other
taggers.

1.2 Rule-Based Taggers

An alternative to the standard model is represented by rule-based taggers.
Voutilainen [85, 50] describes a Constraint Grammar (CG) tagger that has
similarities to TAGGIT. Sets of tags are assigned to words on the basis of a
lexicon and morphological analysis, and tags are then eliminated on the basis of
contextual (pattern-action) rules: for example, ‘the current word is not a verb
if the preceding word is a determiner’. Performance is reported to be as good
as or better than that of stochastic taggers.
A criticism of rule-based taggers is the amount of effort necessary to write

the disambiguation rules. However, as mentioned above, getting good perfor-
mance from an HMM tagger also requires a respectable amount of manual work.
Chanod and Tapanainen [18] conducted an informal experiment in which they
took one month to develop a stochastic tagger for French and the same time to
develop a rule-based tagger, using no annotated training material. For the rule-
based tagger, the time was spent developing a rule-set, and for the stochastic
tagger, the time was spent developing restrictions on transitions and emissions
(‘biases’) to improve tagger performance. At the end of the month, the rule-
based tagger had better performance: 1.9% error versus 4.1% for the stochas-
tic tagger, averaging over two test-sets. Without more objective measures of
“amount of effort”, this can only be taken as an anecdote, but it is suggestive

4

nonetheless.
Brill [15] has developed a technique for mechanically acquiring rules for a

rule-based tagger from manually tagged text. Initially, known words are tagged
with their most-frequent tag, and unknown words are arbitrarily tagged ‘noun’.
By comparing the current tagging with a hand-tagged training text, errors are
identified and candidate error-correction rules are considered. The score of a
rule candidate is the net improvement it effects: the number of times it changes
an erroneous tag to a correct one minus the number of times it changes a correct
tag to an erroneous one. The best rule is selected and applied to the current
output, and the process repeats. Two types of rules are learned: lexical rules,
for assigning an initial tag to unknown words, and context rules, for correcting
tags on the basis of context. All rules are of the form tagi ! tagj if P . For
lexical rules, P includes predicates like ‘the word has suffix -xyz’ or ‘the word
ever appears after foo in the training corpus’. For context rules, P includes
predicates like ‘the preceding tag is X’ or ‘the following two tags are Y Z’.
Training yields a sequence of rules. Tagging consists in assigning initial tags (as
in training), then applying the rules in series.
According to Brill’s evaluation, the taggers’ error rate is indistinguishable

from that of stochastic taggers, and its error rate on words not seen in the
training corpus is markedly lower. An advantage over stochastic taggers is that
significantly less storage is needed for 100-odd pattern-action rules than for an
HMM tagger’s probability matrix. Compactness is an advantage of rule-based
taggers generally.
Another general advantage is speed. Unlike stochastic taggers, most rule-

based taggers are deterministic. In fact, recent work in both the CG paradigm
and in the Brill paradigm has been converging on the compilation of pattern-
action rules into finite-state transducers, inspired in large part by the success
of similar approaches to morphological analysis [48, 52]. CG rules can be re-
expressed as regular expressions describing the contexts in which particular tags
may legally appear. Translating the regular expressions into finite-state trans-
ducers and combining them (by intersection) yields a single transducer repre-
senting the simultaneous application of all rules [18, 86]. Roche and Schabes
have also shown how the rules of Brill’s tagger can be translated to finite-state
transducers and combined (by composition) to yield a single transducer. The
resulting transducer is larger than Brill’s original tagger, but still significantly
smaller than an equivalent stochastic tagger (379 KB vs. 2158 KB). It is also
the fastest tagger I have seen reported in the literature (10,800 wps vs. 1200
wps for an HMM tagger).

1.3 Generative Processes vs. Classification/Regression

The Brill rule-acquisition technique can be seen as a kind of regression or classifi-
cation model [68], related to classification and regression trees (CART) [14] and
decision lists [70, 89]. Regression techniques can be contrasted, at least heuris-

5

tically, with generative-process models like HMM’s. In both cases the goal is
to assign a structure to an observed sentence. In a generative-process model,
sentences are viewed as the output of a generative process, and tag sequences—
more generally, syntactic structures—are identified with the sequence of steps
by which the sentence was generated. The most-likely structure is the one
associated with the sequence of steps by which the sentence was most likely
generated.
In a regression or classification model, by contrast, the problem is couched

in terms of a stochastic relationship between a dependent variable (the classifi-
cation) and one or more predictor variables (properties of the objects that we
wish to classify). In our setting, predictor variables are observable properties of
sentences, and the dependent variable ranges over structures or pieces of struc-
ture. The most-likely structure is the one most likely to be the value of the
dependent variable given the settings of the predictor variables.
With both sorts of models, we aim to maximize P (SjW), for S a structure

and W a sentence. A classification model estimates the function from W to the
probability of S directly, whereas a generative-process model estimates it indi-
rectly, by specifying P (S) and P (W jS), from which P (SjW) can be computed
using Bayes’ Law.
Because the conditionalization is “backwards” in generative-process models

(P (W jS) instead of the desired P (SjW)), classification models are sometimes
more intuitive. For example, a common error in describing HMM taggers is to
combine lexical with contextual probabilities as the product

(3) P (tagjcontext)P (tagjword)
instead of the correct form P (tagjcontext)P (wordjtag). Intuitively, in a stochas-
tic finite-state or context-free process, structure-building choices are condition-
alized only on structure that has already been built, and though choices may be
jointly conditionalized on multiple pieces of existing structure, they may not be
separately conditionalized on them. We may define a generative process that
uses the conditionalization P (tagjcontext;word) but that probability cannot be
computed as the product (3). To illustrate, let o denote the event that a die
throw comes out odd, and h denote the event that a die throw comes out high,
i.e., 4, 5, or 6. Then P (5jo) = 1=3, P (5jh) = 1=3, but P (5jo; h) = 1 whereas
P (5jo)P (5jh) = 1=9.
By contrast, classification models permit one to combine multiple informa-

tion sources. We can define a model in which context (C) and word (W) are
predictor variables and tag (T) is the dependent variable, with T = f(C; W). A
simple example is the linear interpolation model, P (t) = ‚P (tjc)+(1¡‚)P (tjw).
The model parameter ‚ can be estimated from an annotated training text or via
the forward-backward algorithm [45]. Clustering, decision trees, and decision
lists are other general classification methods that have been applied to problems
in computational linguistics [59, 89], including part-of-speech tagging [11].

6

A disadvantage of classification models is that they typically involve super-
vised training—i.e., an annotated training corpus. On the other hand, as we
have seen, HMM models often require as much manually-prepared material as
classification models do, if they are to perform well.
Despite the differences, it should not be supposed that generative-process

and classification models are somehow in opposition. Indeed, linear interpola-
tion can be viewed either as an HMM or as a regression [46, 45], and techniques
of both types are often interspersed in a single model, as for instance when
clustering is used to smooth the parameters of an HMM [17], or when forward-
backward training is used to smooth decision trees [10].
As concerns rule-based and HMM taggers specifically, the differences high-

lighted by the contrast between classification techniques and generative-process
techniques should be counterbalanced by the similarities that are brought to
the fore when one re-expresses rule-based taggers as finite-state transducers.
Namely, HMM’s can also be viewed as stochastic finite-state transducers, as
discussed by Pereira et al. [65]. This line of inquiry promises to give us a model
of tagging (and partial parsing, as we shall see) of great generality, and is an
area that will likely receive increasing attention.

2 Partial Parsing

Let us turn now to parsing. Traditional parsers—including standard stochastic
parsers—aim to recover complete, exact parses. They make a closed-world as-
sumption, to wit, that the grammar they have is complete, and search through
the entire space of parses defined by that grammar, seeking the globally best
parse. As a result, and notwithstanding ‘clean-up’ strategies that are sometimes
applied to salvage failed parses, they do not do well at identifying good phrases
in noisy surroundings.
Unrestricted text is noisy, both because of errors and because of the unavoid-

able incompleteness of lexicon and grammar. It is also difficult to do a global
search efficiently with unrestricted text, because of the length of sentences and
the ambiguity of grammars. Partial parsing is a response to these difficulties.
Partial parsing techniques aim to recover syntactic information efficiently and
reliably from unrestricted text, by sacrificing completeness and depth of analy-
sis.

2.1 An Example

Many partial parsers aim only to recover the nonrecursive cores of noun phrases.
A natural generalization is to recognize the nonrecursive kernels of all ‘major’
phrases, regardless of category (‘chunks’), and to recognize simplex (i.e., nonre-
cursive) clauses. Here is an example of the structures to be recovered:

(4) [S

7

[NP The resulting formations]
[VP are found]
[PP along [NP an escarpment]]

][RC
[WhNP that]
[VP is known]
[PP as [NP the Fischer anomaly]]

]

The idea is to factor the parse into those pieces of structure that can be
reliably recovered with a small amount of syntactic information, as opposed
to those pieces of structure that require much larger quantities of information,
such as lexical association information. Chunks and simplex clauses can be
recovered quite reliably with a small regular-expression grammar. Resolving
attachments generally requires information about lexical association between
heads, hence it is postponed. Indeed, recovering chunks and clauses is useful
for bootstrapping lexical association information. By reducing the sentence
to chunks, there are fewer units whose associations must be considered, and
we can have more confidence that the pairs being considered actually stand
in the syntactic relation of interest, rather than being random pairs of words
that happen to appear near each other. Recognizing simplex clauses serves to
constrain the search space, on the assumption that attachment out of the local
clause is rare enough to be negligible.
The resulting structure is not a standard syntax tree, nor are chunks and

clauses necessarily even consistent with a standard tree. For example, in (4), if
restrictive relatives are adjoined to N, then the N escarpment that . . . anomaly
constitutes a phrase in the standard tree that is incompatible with several of
the phrases in (4), including the noun chunk an escarpment, the PP containing
it, and the first simplex clause as a whole.
On the other hand, (4) is a subgraph of the standard tree, and the standard

tree can be recovered via attachment; that is, by adding arcs to the graph (4).
To be precise, we must also insert additional nodes (such as the aforementioned
N), but the important point is that (4) does constitute a useful intermediate
representation—it is not necessary to throw it away and start over from scratch
in order to recover traditional trees.
The attachment operation is not widely used in computational-linguistic

parsing algorithms, the most notable exceptions being the Marcus parser [61]
and Don Hindle’s industrial-strength version thereof, Fidditch (see below). By
contrast, attachment is widely assumed as a basic parsing action in the psy-
cholinguistic literature. Indeed, though we have to this point considered chunks
and attachment only as a pragmatic response to the exigencies of unrestricted
text, there are in fact reasons to think that chunks and simplex clauses play a
role in human language processing [3, 2, 4]. And, incidentally, as a nonrecursive
version of phrase structure, chunks have proven useful in neural net models of

8

parsing [44].

2.2 Some Simple Techniques

Probably the simplest chunk-recognizer is simply to take everything delimited
by function words (or stop words) as a chunk. This technique was used in
a completely different context by Ross and Tukey [73]. They called stretches
of stop words “chinks”, and stretches of non-stop-words “chunks”. A similar
approach was used in earlier versions of the Bell Labs speech synthesizer (Mark
Liberman, personal communication).
Bourigault [12] uses this technique for identifying noun phrases in French.

Chinks are any words that can’t belong to a (common) noun phrase, such as
verbs, pronouns, conjunctions, prepositions, and determiners, with a few listed
exceptions including de, de la, and a. Chunks are stretches of text between
chinks. For example:

un [traitement de texte] est installé sur le [disque dur de la station
de travail]

A large set of specific part-of-speech patterns were then used to extract probable
technical terms out of chunks.
A simple stochastic technique is that used by Church [20]. He constructed

a noun-chunk recognizer that takes the output of an HMM tagger as input. It
marks noun chunks by inserting open and close brackets between pairs of tags.
For example:

(5) [] []
$ DT NN VBD IN NN CS

the prosecuter said in closing that

Four bracket combinations are possible between each pair of tags: <, =,
=<, and no brackets. We assume that there are no empty phrases, hence no
need for <=, and no nesting, hence no need for <<, ==, =<<, etc. However,
to make sure that brackets are properly paired, we must keep track of whether
we are inside or outside of a noun chunk. Accordingly, we split the no-bracket
condition into two states: no-brackets inside a chunk (I) versus no-brackets
outside a chunk (O), yielding five states: <, =, =<, I, and O. The probabilities
of illegal transitions are fixed at zero, illegal transitions being = =, < <, =<
<, = I, etc.
The emission from a given state is a pair of tags. For example, sentence (5)

is represented more accurately as:

(6) [I] O

$,DT DT,NN NN,VB VB,IN IN,NN NN,CS

[]

9

We do not constrain the model to generate only well-formed sequences of tag-
pairs, i.e., sequences in which, if hfi; fli immediately precedes h°; –i, then fl = °.
Indeed, there is no combination of model parameters that we can fix in advance
to guarantee well-formed tag pairs. This lack of constraint is harmless, however,
since in training and recognition the tag pairs are given as input. We are not
using the model to generate tag-pairs, but to estimate the bracket sequence.
The technique of encoding chunks as ‘bracket tags’ is also used by Ramshaw

and Marcus [69]. Instead of HMM training, however, they apply Brill’s rule-
learning methods.

2.3 Fidditch

An older, and by most measures still the most successful, partial parser is Hin-
dle’s parser Fidditch [39, 41]. Fidditch was not intended as a partial parser
per se. But it was specifically designed for use on unrestricted text, including
such noisy text as transcripts of spoken language. It is based on the Marcus
parser, but simplifies the rule formalism, to make it easier to write a very large
grammar, and introduces a new action, ‘punt’.2 A phrase whose role cannot
be determined is removed from the input, but left unattached, and the parse
proceeds as if it were not there. This achieves a containment of ambiguities
of much the same sort as that provided by recognition of simplex clauses. The
parser recognizes the key elements of a clause—the clause boundary markers, the
subject and predicate—and these attached elements surround punted phrases,
preventing the degree of ambiguity from exploding. The following exemplifies a
typical Fidditch tree:

NP Aux VP

we e approached .

Main

S

NP

them

PP

NP

N’

N’

about

a

new

venue

for

the

PP

NP

meeting

N’

A property of Fidditch that makes it useful for parsing corpora is its speed.
Because it is deterministic, and more subtly, because its use of attachment as a
basic action keeps the stack from growing without bound, it can be implemented
as a “nearly finite state” automaton. It is one of the fastest parsers I am aware
of, achieving speeds of 5600 words per second on an SGI (1200 wps on a Sparc
1). There are only a few parsers to my knowledge with speeds of the same order
of magnitude: Cass2—8900 wps, UltraSparc; 1300 wps, Sparc1 [5]; Vilain &

2This comes from an American football term, meaning to abandon the current attempt
to score, and kick the ball away. There is no relation to the British term refering to boats
propelled by poles.

10

Palmer’s implementation of the Brill parser—ave. 7400 wps, Sparc10 [personal
communication]; Copsy—ca. 2700 wps, Siemens BS2000 [78]; ENGCG—1000+
wps, Sparc 10 [83]. Given the differences in hardware, it is difficult to rank
these parsers, but they clearly outstrip the next fastest parsers that have been
reported in the literature, whose speeds are in the 10–60 wps range. By con-
trast, speeds for traditional chart parsers are often well under 1 wps. Without
controlled comparisons, reported speeds must be taken with a grain of salt;
nonetheless, I think it is significant that the fastest parsers are all deterministic,
rule-based partial parsers.

2.4 Brill, CG, Copsy, and Supertags

The transformation-based learning and constraint grammar techniques discussed
earlier for tagging have also been applied to parsing. Brill [15] proposes start-
ing with a uniformly right-branching parse and learning rules for rotating local
trees in order to improve the fit to a training corpus. Learning can be time-
consuming, but once the rules have been learned, parsing is very fast. Vilain
& Palmer [82] explore techniques for improving learning speeds, and mention a
fast parser implementation.3

Voutilainen [50] describes a partial parser, ENGCG, that is very similar in
operation to the constraint-grammar tagger. Lexical and morphological analysis
assigns a set of possible syntactic function tags to each word, in addition to part
of speech. The syntactic function of each word is disambiguated in the same way
that part of speech is disambiguated, via the application of pattern-matching
rules to eliminate incorrect tags. Successful disambiguation provides skeletal
syntactic information. The syntactic analysis is a dependency analysis, in the
sense that only word-word relations are considered. Words are not explicitly
associated with their governors, but the syntactic-function annotations signifi-
cantly constrain the set of compatible analyses, and can be seen as representing
an ambiguity class of analyses.
Copsy [78] is a dependency parser for noun phrases, designed to identify

and normalize multi-word terms for information retrieval. Parsing is carried
out deterministically using pattern-action rules to identify dependencies. To
preserve the speed and accuracy of parsing, rules are required to be relevant,
highly accurate, and cheap to apply. The parser uses only 45 rules, though over
200 candidates were considered in the course of parser development.
Joshi and Srinivas [47] describe a parser that, like the Voutilainen work, uses

tagging techniques to parse. Their partial parser developed from work on lexi-
calized tree-adjoining grammar (LTAG), in which each elementary tree contains
a unique lexical item. Substitution and adjunction in LTAG is equivalent to the
attachment operation, or the insertion of an arc in a dependency graph. A word
can appear in multiple elementary trees, each representing a different syntactic

3The cited paper reports 13,000 wps, but that does not include file I/O times; file I/O
reduces speeds to 6800–7900 wps.

11

structure it might appear in, and a different valency, that is, a different set of de-
pendents. Partial parsing consists in selecting a single elementary tree for each
word, so as to permit a globally consistent dependency graph. The search for a
consistent assignment of elementary trees is accomplished by viewing elementary
trees as “supertags” (analogous to the syntactic-function tags of Voutilainen),
and employing an adaptation of Viterbi search, as in part-of-speech tagging. As
with Voutilainen, partial parsing in this sense does not produce an explicit struc-
ture, but can be seen as reducing the size of the ambiguity class of parse-trees
for the sentence.

2.5 Finite-State Cascades

The idea of using cascaded finite-state machines was pursued by Ejerhed and
Church [28, 27] and myself [1, 3, 5], and in a somewhat different paradigm, by
Koskenniemi [53, 54].4 Generalizing a bit from the cited papers, a finite-state
cascade consists of a sequence of strata, each stratum being defined by a set of
regular-expression patterns for recognizing phrases. Here is a concrete example:

(7) 1: NP ! D? A* N+ j Pron
VP ! Md Vb j Vz j Hz Vbn j Bz Vbn j Bz Vbg

2: PP ! P NP
3: SV ! NP VP
4: S ! (AdvjPP)? SV NP? (AdvjPP)*

The strata are numbered. The output of stratum 0 consists of parts of speech.
The patterns at level l are applied to the output of level l ¡ 1 in the manner
of a lexical analyzer. Multiple patterns may match, and a given pattern may
match different-length prefixes of the input. The longest match is selected (ties
being resolved in favor of the first pattern listed), the matched input symbols
are consumed from the input, the category of the matched pattern is produced
as output, and the cycle repeats. If no pattern matches, an input symbol is
punted—that is, removed from the input and passed on as output.
The grammar is designed such that rules, when applied using ‘longest match’

for disambiguation, are very reliable. There is certain linguistic information we
wish to recover in the end—to a first approximation, a traditional syntax tree—
and we wish it to be not too difficult to extract that information from the trees
we build here, but there is no reason to insist that every phrase be linguistically
motivated. For example, in (7), the NP-VP phrase SV is not linguistically
motivated. Its purpose is to distinguish subject from non-subject NP’s before
trying to identify clause boundaries, in order to avoid e.g. having John be mis-
identified as the object of said in I said John was smart. If we omitted the SV
pattern, the S pattern would consume I said John in I said John was smart,
leaving a stranded VP.

4Though superficially similar, recursive transition networks [88] differ, as the name sug-
gests, precisely in the question of recursion, which is crucially absent in finite-state cascades.

12

Patterns are translated by standard techniques [7] into finite-state automata.
We take the union of all automata at a given stratum, yielding a single automa-
ton. This stratum automaton is determinized and minimized. Since the stratum
automaton is deterministic, each prefix of the input takes it to a unique state,
hence (assuming that the input is of finite length) there is a longest prefix of
the input that takes the stratum automaton into a final state, and that final
state is unique. In turn, that final state corresponds to a set of final states from
the pattern automata, allowing us to determine which pattern or patterns were
responsible for the match.
Instead of using the longest-match heuristic, we can construct a hidden

Markov model from the stratum recognizer. For concreteness’ sake, let us con-
sider the patterns A ! ab⁄, B ! ab⁄, yielding the stratum automaton (8a).
First we turn the stratum automaton into a transducer by adding arcs that
output A and B, leading to new final states that have no outgoing arcs. Then
we add epsilon transitions from the new final states back to the initial state, to
make an automaton that recognizes patterns A and B repeatedly. This yields
automaton (8b).

(8) a.
0 1

{A,B}

a b b.

0 1
a:e

b:e
2

3

e:A

e:B
e:e

e:e

For example, running automaton (8b) against input aba produces (as one alter-
native) the state sequence

a b
0 1 1

A

a
0 1 3

B
2 0

Output
States
Input

Now we eliminate transitions that consume no input by folding them into
the surrounding states to create new complex states:

(9)

a b
0 1 1

A

a
0 1 3

B
2 0

Applying this construction systematically to the automaton (8b) yields the fol-
lowing automaton, which is suitable for use in a hidden Markov model:

13

(10)
0 1

{A}

a b

4 5

{B}

a
a

a
ab b

a

a

a a

State 4 represents the first ‘complex state’ in (9), involving transitions from 1
to 2 to 0. Accordingly, it has the same incoming arcs as state 1, and the same
outgoing arcs as state 0. State 5 represents the second complex state in (9).
It has the same incoming and outgoing arcs as state 4; the difference being
that state 4 represents the recognition of an A whereas state 5 represents the
recognition of a B.
If we train the HMM (10) and then use the Viterbi algorithm to find the

most-likely state sequence for a given input, the recognized phrases (A’s and
B’s) can be read unambiguously off the state sequence. For example, suppose
that the the most-likely state sequence for input aab is 0415. This represents
the parse [A a][B ab]:

[A][B]
state: 0 4 1 5
input: a a b

State 4 marks the end of an A phrase, and state 5 marks the end of a B phrase.
Each phrase begins where the previous phrase ended.
Ejerhed [27] compares the performance of longest-match and stochastic ver-

sions of the stratal parser, and reports lower error rates for the stochastic ver-
sion: 1.4% vs. 3.3% for noun phrase chunks, and 6.5% vs. 13% for clauses. HMM
chunk parsers have also been investigated by Chen and Chen [19] and Rooth
[72].
The parser just described consists of a sequence of stochastic finite-state

automata (i.e., HMM’s), one for each stratum. It is possible to fold all the
strata together into a single HMM. The states of the new HMM are tuples of
states, one from each stratum. For example, suppose the automaton for stratum
1 is as in the previous example, initially in the ‘unfolded’ form (8b). Let us add
a second stratum with pattern C ! AB. Here’s an example of a state sequence
on input aba:

(11)

a b
0 1 1

A
0 0 0

a
0 1 3

B
1 2 3

C
1

3

Output

Intermediate

Input

Stratum-2 states

Stratum-1 states 2

1 0

3 0

0

(We have inserted no-op transitions where there is a transition in one stratum
but no change of state in the other.) As in the previous example, we fold

14

transitions that involve no consumption of input into a new complex state, and
we now also fold together states across strata. Continuing example (11), the
folded automaton passes through the following sequence of four complex states:

a b
0 1 1

A
0 0 0

a
0 1 3

B
1 2 3

C
1

3

Output

Intermediate

Input

Stratum-2 states

Stratum-1 states 2

1 0

3 0

0

To construct the entire set of complex states and transitions, we start with
a state consisting of initial states in every stratum, then add a new arc and
(if necessary) a new state for every possible input symbol on which there is a
transition. The process is repeated until no new arcs or states can be added.
On the assumption that no patterns match the empty string, termination is
guaranteed. The result is a single HMM spanning all strata, such that we can
read off the parse for a given input from the state sequence the automaton
passes through. In this way it is possible to do stratal parsing with standard
HMM training and recognition techniques.
In more formal terms, we have turned each stratum automaton into a finite-

state transducer, composed the transducers, and eliminated †-transitions [48, 71,
65]. The only difference from standard transducer composition is that outputs
at intermediate levels matter. The standard algorithms assume that states may
be merged if doing so does not affect the relationship between the input and the
final output. But in stratal parsing, we wish to keep states distinct that encode
different intermediate-level outputs, since different intermediate-level outputs
represent different parses.

2.6 Longest Match

Despite the attractions of the HMM version of the stratal parser, we should not
be too hasty to abandon the deterministic ‘longest-match’ version entirely. It
also has advantages, including speed, the ability to do phrase-spotting, and the
ability to capture a wider range of context effects.
‘Phrase-spotting’ refers to the ability to recognize phrases reliably without

analyzing the entire sentence. Traditional parsing methods, as well as HMM’s,
do a global optimization. If we have a very good model of certain phrases,
but a very poor model of the rest of the language, our ability to detect the
phrases of interest suffers. By contrast, the methodology behind the longest-
match approach is to start from ‘islands of reliability’, to build up larger and
larger phrases that are themselves reliable, but may enclose stretches whose
analysis is uncertain, such as noun-noun modification (within noun chunks), or
PP-attachment (within simplex clauses).
It should be noted that the predicate ‘longest match’ cannot be captured

by any manipulation of the probabilities in a stochastic CFG. ‘Longest match’

15

involves a comparison across competing analyses: a phrase is a longest match
only if there is no competing analysis with a longer phrase at the same level and
position. It can be expressed in terms of the context in which a phrase appears,
but not in terms of context-free rewrite probabilities.
Further, the measures of reliability we are interested in are global precision

and recall, which also cannot be identified with the probabilities supplied by a
stochastic grammar. In particular, precision is not the same as the conditional
probability of a phrase given the input sentence. A particular pattern could
have very low precision, in general, yet if a phrase it outputs happens to belong
to the only parse the grammar assigns to a given sentence (perhaps because of
shortcomings in the grammar), the conditional probability of the phrase is 1.
We can think of the longest-match parser as an instance of parsing on the

basis of a classification model, in which ‘longest match’ is one predictor variable.
As such, we have considerably more flexibility for bringing additional contextual
information to bear than in the straightforward HMM version.

2.7 Applications

Partial parsing has been put to use in a variety of ways, including bootstrap-
ping a more complete parser, terminology and multi-word term extraction for
information retrieval, and as a component of data extraction systems.
The chief goal in bootstrapping is the acquisition of lexical information

needed for more complete parsing. The type of information to be acquired
is primarily collocational, particularly subcategorization frames and selectional
restrictions. In an influential paper by Church et al. [21], Hindle’s parser Fid-
ditch was put to use to extract subject-verb and verb-object pairs. Measures of
associativity were applied to the pairs, to provide a crude model of selectional
restrictions. Two measures of association were considered: mutual information
and ‘t-scores’ (though a normal approximation was used instead of a t distri-
bution). Hindle [40] also used Fidditch to induce a noun hierarchy, and Hindle
and Rooth [42] used Fidditch to extract V-NP-PP triples, then used the ‘t-
score’ measure of association to disambiguate the attachment of the PP. Partial
parsing has also been used as a preprocessor for the acquisition of verbal sub-
categorization frames [60], and to support finer-grained alignment in bilingual
corpora [55].
A major impetus for interest in partial parsing has been provided by the

series of competitions known as Message Understanding Conferences (MUC).
These are U.S.-government sponsored competitions in which the task is filling
in relational database templates from newswire text. Here is an example of an
abbreviated template, and the textual sources for each fill from a paragraph of
news text:

16

Garcia Alvarado, 56, was killed when

a bomb placed by urban guerrillas

on his vehicle exploded as it came to a halt

at an intersection in downtown San Salvador.

Message: ID TST2-MUC4-00480.

Incident: Location El Salvador: San Salvador (City)3.

Incident: Type Bombing4.

Incident: Instrument ID "bomb"6.

Perp: Individual ID "urban guerrillas"9.

Phys Tgt: ID "vehicle"12.

Hum Tgt: Name "Garcia Alvarado"18.

23. Hum Tgt: Effect of Incident Death: "Garcia Alvarado"

The competition is highly goal-oriented and systems’ performance on the extrac-
tion task is exhaustively evaluated. This encourages very pragmatic approaches.
The typical MUC system goes through roughly these steps: filter out irrel-

evant texts, tokenize, parse around keywords, fill semantic frames, and merge
frames to fill data templates. Partial parsing is a natural choice in this context,
as Weischedel et al. note [87]. One can do very well by recognizing syntactic frag-
ments around informative words, plus special constructs like dates, names, and
place names, then putting fragments together using information from domain-
specific semantic frames. The parallelism to chunk-and-attachment parsing is
inescapable.
One group in particular created quite a stir when they replaced a traditional

system that had been developed over many years with a cascaded finite-state
recognizer. In a remarkably candid quote, they describe what motivated their
decision:

We were struck by the strong performance that the group at the
University of Massachusetts got out of a fairly simple system. ...
[And] it was simply too embarrassing to have to report at the MUC-3
conference that it took TACITUS 36 hours to process 100 messages.
FASTUS has brought that time down to 11 minutes. [43]

After partial parsing, syntactic fragments are stitched together using se-
mantic frames. Because the template-filling task keeps the semantic space quite
limited, it is practical to construct a knowledge base of semantic frames by hand.
The semantic frame of a chunk is defined to be the semantic frame of its head.
One chunk can be attached to another only if the semantic frame of the first
can fill a slot in the semantic frame of the second. Type restrictions on slots
have the consequence that only a few ways of attaching chunks to one another
are possible.

2.8 Acquisition

An open research question is how the grammar for a partial parser might be
automatically acquired. A number of avenues are currently being pursued,
though none of the current techniques yields results competitive with hand-
written grammars.

17

There are standard supervised learning techniques for finite-state automata
[32, 33, 74] and probabilistic grammars [80]. As mentioned above, Brill has
applied his rule-learning techniques to phrase-structure grammars [15], though
generalizations of the rules he uses for tagging might be more effective for partial
parsing [69].
Techniques for unsupervised learning of phrase structure have also been

proposed. The discovery procedures of Zellig Harris can be seen as an early
attempt at unsupervised phrase-structure learning [36, 37, 38]. Traditionally,
phrases have been defined in terms of two aspects of distribution: phrases are
coherent—they move, conjoin, etc. as a unit—and phrases of the same type are
intersubstitutable—they appear in the same contexts. Quantitative measures
for these properties are currently well-known in computational linguistics, prob-
ably the most prevalent being mutual information as a measure of coherence,
and divergence or relative entropy as a measure of substitutability.
In the 1960’s, Stolz [81] proposed using mutual information (though not

under that name) to identify phrases in unannotated text. A more elaborate
technique for parsing by means of mutual information is described by Magerman
and Marcus [58]. Finch [31] develops a general framework for induction via sub-
stitutability, and explores a range of distributional similarity functions. Work
by Smith and Witten [79] is especially interesting for chunk parsing because
they first identify and categorize function words, then induce a chink-and-chunk
grammar on that basis.
To some extent, the need for mechanical learning methods for partial parsers

is not pressing, to the extent that partial parsing is defined as recovering just
that structure that can be recovered with minimal manually-supplied informa-
tion. Nonetheless, practical acquisition methods would simplify the development
of a parser for new languages, or new genres of text. And an acquisition method
for chunks, combined with an acquisition method for attachment, could serve
to further our understanding of human language acquisition.

References

[1] Steven Abney. Rapid incremental parsing with repair. In Proceedings of the 6th
New OED Conference: Electronic Text Research, pages 1–9, Waterloo, Ontario,
October 1990. University of Waterloo.

[2] Steven Abney. Syntactic affixation and performance structures. In D. Bouchard
and K. Leffel, editors, Views on Phrase Structure. Kluwer Academic Publishers,
1990.

[3] Steven Abney. Parsing by chunks. In Robert Berwick, Steven Abney, and Carol
Tenny, editors, Principle-Based Parsing. Kluwer Academic Publishers, 1991.

[4] Steven Abney. Chunks and dependencies: Bringing processing evidence to bear
on syntax. In Jennifer Cole, Georgia M. Green, and Jerry L. Morgan, editors,
Computational Linguistics and the Foundations of Linguistic Theory, pages 145–
164. CSLI, 1995.

18

[5] Steven Abney. Partial parsing via finite-state cascades. In John Carroll, editor,
Workshop on Robust Parsing (ESSLLI ’96), pages 8–15, 1996.

[6] I. Aduriz, I. Alegria, J.M. Arriola, X. Artola, A. Diaz de Illarraza, N. Ezeize,
K. Gojenola, and M. Maritxalar. Different issues in the design of a lemma-
tizer/tagger for Basque. In SIGDAT-95 (EACL-95 Workshop), 1995. Also avail-
able as cmp-lg:9503020.

[7] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Tech-
niques, and Tools. Addison-Wesley, 1986.

[8] Susan Armstrong, Graham Russell, Dominique Petitpierre, and Gilbert Robert.
An open architecture for multilingual text processing. In EACL-95 SIGDAT
Workshop, pages 30–34, 1995.

[9] L. R. Bahl and R. Mercer. Part-of-speech assignment by a statistical decision al-
gorithm. In International Symposium on Information Theory, Ronneby, Sweden,
1976.

[10] Lalit R. Bahl, Peter F. Brown, Peter V. de Souza, and Robert L. Mercer. A tree-
based statistical language model for natural language speech recognition. IEEE
Trans. on Acoustics, Speech, and Signal Processing, pages 507–514, 1991.

[11] Ezra Black, F. Jelinek, J. Lafferty, R. Mercer, and S. Roukos. Decision tree
models applied to the labeling of text with parts-of-speech. In Darpa Workshop
on Speech and Natural Language, San Mateo, CA, 1992. Morgan Kaufman.

[12] Didier Bourigault. Surface grammatical analysis for the extraction of terminolog-
ical noun phrases. In COLING-92, Vol. III, pages 977–981, 1992.

[13] Thorsten Brants and Christer Samuelsson. Tagging the Teleman Corpus. In Proc.
10th Nordic Conf. of Comp. Ling., 1995. Available as cmp-lg/9505026.

[14] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression
Trees. Wadsworth and Brooks, 1984.

[15] Eric Brill. Transformation-Based Learning. PhD thesis, Univ. of Pennsylvania,
1993.

[16] Eric Brill. Some advances in transformation-based part of speech tagging. In
Proceedings of AAAI-94, 1994.

[17] P. Brown, V. Della Pietra, P. deSouza, J. Lai, and R. Mercer. Class-based n-gram
models of natural language. Computational Linguistics, 18(4):467–480, 1992.

[18] Jean-Pierre Chanod and Pasi Tapanainen. Tagging French – comparing a statis-
tical and constraint-based method. In EACL-95, 1995.

[19] Kuang-hua Chen and Hsin-Hsi Chen. Extracting noun phrases from large-scale
texts: A hybrid approach and its automatic evaluation. In Proceedings of ACL,
1994.

[20] Kenneth Church. A stochastic parts program and noun phrase parser for un-
restricted texts. In Proceedings of the Second Conference on Applied Natural
Language Processing, Austin, Texas, 1988.

[21] Kenneth Church, William Gale, Patrick Hanks, and Donald Hindle. Parsing, word
associations and typical predicate-argument relations. In International Workshop
on Parsing Technologies, pages 389–98, 1989.

19

[22] Kenneth Church and Robert Mercer. Introduction to the special issue on com-
putational linguistics using large corpora. Computational Linguistics, 19(1):1–24,
1993.

[23] Doug Cutting, Julian Kupiec, Jan Pedersen, and Penelope Sibun. A practical
part-of-speech tagger. In Third Conference on Applied Natural Language Pro-
cessing (ANLP-92), pages 133–140, 1992.

[24] Evangelos Dermatas and George Kokkinakis. Automatic stochastic tagging of
natural language texts. Computational Linguistics, 21(2):137–164, 1995.

[25] S. DeRose. Grammatical category disambiguation by statistical optimization.
Computational Linguistics, 14(1), 1988.

[26] A.M. Derouault and B. Merialdo. Language modelling at the syntactic level. In
Proc. 7th Int’l. Conference on Pattern Recognition, 1984.

[27] Eva Ejerhed. Finding clauses in unrestricted text by finitary and stochastic meth-
ods. In Proceedings of the 2nd Conference on Applied Natural Language Process-
ing, Austin, Texas, 1988.

[28] Eva Ejerhed and Kenneth Church. Finite state parsing. In Fred Karlsson, editor,
Papers from the Seventh Scandinavian Conference of Linguistics, pages 410–432,
Hallituskatu 11–13, SF-00100 Helsinki 10, Finland, 1983. University of Helsinki,
Department of General Linguistics.

[29] David Elworthy. Does Baum-Welch re-estimation help taggers? In 4th Conference
on Applied Natural Language Processing (ANLP-94), pages 53–58, 1994.

[30] Helmut Feldweg. Implementation and evaluation of a German HMM for POS
disambiguation. In EACL SIGDAT Workshop, 1995.

[31] Steven Paul Finch. Finding Structure in Language. PhD thesis, University of
Edinburgh, 1993.

[32] K.S. Fu. Syntactic Methods in Pattern Recognition. Academic Press, New York,
1974.

[33] K.S. Fu and T.L. Booth. Grammatical inference: Introduction and survey. IEEE
Trans. on System, Man and Cybernetics, 5, 1975. In two parts.

[34] R. Garside. The CLAWS word-tagging system. In Garside R., F. Leech, and
G. Sampson, editors, The Computational Analysis of English. Longman, 1987.

[35] Barbara B. Greene and Gerald M. Rubin. Automated grammatical tagging of
English. Department of Linguistics, Brown University, 1971.

[36] Zellig Harris. From morpheme to utterance. Language, 22, 1946.

[37] Zellig Harris. Methods in Structural Linguistics. University of Chicago Press,
Chicago, 1951.

[38] Zellig Harris. From phoneme to morpheme. Language, 31, 1955.

[39] Donald Hindle. User manual for Fidditch. Technical Memorandum #7590-142,
Naval Research Laboratory, 1983.

[40] Donald Hindle. Acquiring a noun classification from predicate-argument struc-
tures. Tech. Memo. 11222-881017-15, AT&T Bell Laboratories, 1988.

20

[41] Donald Hindle. A parser for text corpora. In A. Zampolli, editor, Computational
Approaches to the Lexicon. Oxford University Press, New York, 1994.

[42] Donald Hindle and Mats Rooth. Structural ambiguity and lexical relations. In
Proceedings of DARPA Speech and Natural Language Workshop. Morgan Kauf-
man: New York, June 1990.

[43] Jerry R. Hobbs et al. SRI International: Description of the FASTUS system used
for MUC-4. In Proceedings, Fourth Message Understanding Conference (MUC-4),
pages 268–275, San Mateo, CA, 1992. Morgan Kaufmann.

[44] Ajay N. Jain. PARSEC: A Connectionist Learning Architecture for Parsing Spo-
ken Language. PhD thesis, CMU, Pittsburgh, PA, 1991. Available as Technical
Report CMU-CS-91-208.

[45] F. Jelinek. Self-organized language modeling for speech recognition. W & L,
pages 450–506, 1985.

[46] F. Jelinek and R. Mercer. Interpolated estimation of Markov source parameters
from sparse data. In E.S. Gelsema and L.N. Kanal, editors, Pattern Recognition
in Practice, pages 381–397. Amsterdam : North Holland Publishing Co., 1980.

[47] Aravind K. Joshi and B. Srinivas. Disambiguation of super parts of speech (or
supertags): Almost parsing. In COLING-94, 1994.

[48] Ronald Kaplan and Martin Kay. Regular models of phonological rule systems.
Computational Linguistics, 1994.

[49] Fred Karlsson. Constraint grammar as a framework for parsing running text. In
COLING-90, pages 168–173, 1990.

[50] Fred Karlsson, Atro Voutilainen, Juha Heikkilä, and Arto Anttila, editors. Con-
straint Grammar. Mouton de Gruyter, Berlin, 1995.

[51] S. Klein and R. Simmons. A computational approach to grammatical coding of
English words. JACM, 10:334–337, 1963.

[52] Kimmo Koskenniemi. Two-level morphology: A general computational model
for word-form recognition and production. Department of General Linguistics,
University of Helsinki, 1983.

[53] Kimmo Koskenniemi. Finite-state parsing and disambiguation. In COLING-90,
pages 229–232, 1990.

[54] Kimmo Koskenniemi, Pasi Tapanainen, and Atro Voutilainen. Compiling and
using finite-state syntactic rules. In COLING-92, pages 156–162, 1992.

[55] Julian Kupiec. An algorithm for finding noun phrase correspondences in bilingual
corpora. In 31st Annual Meeting of the Association for Computational Linguistics,
pages 17–22, 1993.

[56] Leech, Garside, and Atwell. The automatic grammatical tagging of the LOB
corpus. ICAME News, 7:13–33, 1983.

[57] Fernando Sánchez León and Amalio F. Nieto Serrano. Development of a Spanish
version of the Xerox tagger. CRATER/WP6/FR1 and cmp-lg/9505035, 1995.

[58] D. Magerman and M. Marcus. Parsing a natural language using mutual informa-
tion statistics. In Proceedings of AAAI-90, 1990.

21

[59] David Magerman. Natural Language Parsing as Statistical Pattern Recognition.
PhD thesis, Stanford, 1994.

[60] Christopher D. Manning. Automatic acquisition of a large subcategorization
dictionary from corpora. In 31st Annual Meeting of the Association for Compu-
tational Linguistics, pages 235–242, 1993.

[61] Mitchell Marcus. A Theory of Syntactic Recognition for Natural Language. The
MIT Press, Cambridge, MA, 1980.

[62] Bernard Merialdo. Tagging English text with a probabilistic model. Computa-
tional Linguistics, 20(2):155–172, 1994.

[63] Kemal Oflazer and İlker Kuruöz. Tagging and morphological disambiguation
of Turkish text. In Fourth Conference on Applied Natural Language Processing
(ANLP-94), pages 144–149, 1994.

[64] Douglas B. Paul. Speech recognition using Hidden Markov Models. Lincoln
Laboratory Journal, 3(1):41–62, 1990.

[65] Fernando C.N. Pereira, Michael Riley, and Richard W. Sproat. Weighted rational
transductions and their application to human language processing. In Human
Language Technology Workshop, pages 262–267, 1994.

[66] L. R. Rabiner. A tutorial on Hidden Markov Models and selected applications in
speech recognition. Proceedings of the IEEE, 77(2):257–285, February 1989.

[67] L.R. Rabiner and B.H. Juang. An introduction to Hidden Markov Models. IEEE
ASSP Magazine, page 4ff, January 1986.

[68] Lance A. Ramshaw and Mitchell P. Marcus. Exploring the statistical derivation
of transformational rule sequences for part-of-speech tagging. In Proceedings of
the ACL Balancing Act Workshop, 1994.

[69] Lance A. Ramshaw and Mitchell P. Marcus. Text chunking using transformation-
based learning. In ACL Third Workshop on Very Large Corpora, pages 82–94,
1995.

[70] R.L. Rivest. Learning decision lists. Machine Learning, 2:229–246, 1987.

[71] Emmanuel Roche and Yves Schabes. Deterministic part-of-speech tagging with
finite-state transducers. Computational Linguistics, pages 227–254, 1995.

[72] Mats Rooth. Unitary stochastic part-of-speech and phrase tagging. Manuscript,
University of Stuttgart, 1994.

[73] Ian C. Ross and John W. Tukey. Introduction to these volumes. In Index to
Statistics and Probability, pages iv–x. The R & D Press, Los Altos, CA, 1975.

[74] E. Sanchis, F. Casacuberta, I. Galiano, and E. Segarra. Learning structural
models of subword units through grammatical inference. In IEEE ICASSP, Vol.
1, pages 189–192, 1991.

[75] H. Schmid. Improvements in part-of-speech tagging with an application to Ger-
man. In EACL SIGDAT Workshop, 1995.

[76] Hinrich Schütze. Part-of-speech induction from scratch. In 31st Annual Meeting
of the Association for Computational Linguistics, pages 251–258, 1993.

[77] Hinrich Schütze. Distributional part-of-speech tagging. In EACL-95, 1995.

22

[78] Christoph Schwarz. Automatic syntactic analysis of free text. JASIS, 41(6):408–
417, 1990.

[79] Tony C. Smith and Ian H. Witten. Language inference from function words.
Manuscript, University of Calgary and University of Waikato, January 1993.

[80] Andreas Stolcke and Stephen Omohundro. Inducing probabilistic grammars by
Bayesian model merging. In Grammatical Inference and Applications, Second
International Colloquium on Grammatical Inference. Springer Verlag, 1994.

[81] W. Stolz. A probabilistic procedure for grouping words into phrases. Language
and Speech, 8:219–235, 1965.

[82] Marc Vilain and David Palmer. Transformation-based bracketing: Fast algo-
rithms and experimental results. In John Carroll, editor, Workshop on Robust
Parsing (ESSLLI ’96), pages 93–102, 1996.

[83] Atro Voutilainen. NPtool, a detector of English noun phrases. In Proceedings of
the Workshop on Very Large Corpora, pages 48–57, 1993.

[84] Atro Voutilainen. A syntax-based part-of-speech analyser. In EACL-95, 1995.

[85] Atro Voutilainen, Juha Heikkilä, and Arto Anttila. Constraint grammar of En-
glish: A performance-oriented introduction. Technical Report Publication No.
21, University of Helsinki, Department of General Linguistics, Helsinki, 1992.

[86] Atro Voutilainen and Timo Jarvinen. Specifying a shallow grammatical represen-
tation for parsing purposes. In EACL-95, 1995.

[87] Ralph Weischedel et al. Partial parsing: A report on work in progress. In Pro-
ceedings of the DARPA Speech and Natural Language Workshop, pages 204–209,
Asilomar, CA, 1991.

[88] William A. Woods. Transition network grammars for natural language analysis.
Communications of the ACM, 13:591–596, 1970.

[89] David Yarowsky. Decision lists for lexical ambiguity resolution. Manuscript,
University of Pennsylvania, 1994.

23

