
Stochastic Attribute-Value Grammars

Steven P. Abney⁄

AT&T Laboratories

Probabilistic analogues of regular and context-free grammars are well-known in compu-

tational linguistics, and currently the subject of intensive research. To date, however, no

satisfactory probabilistic analogue of attribute-value grammars has been proposed: previ-

ous attempts have failed to define an adequate parameter-estimation algorithm.

In the present paper, I define stochastic attribute-value grammars and give an algo-

rithm for computing the maximum-likelihood estimate of their parameters. The estimation

algorithm is adapted from (Della Pietra, Della Pietra, and Lafferty, 1995). To estimate

model parameters, it is necessary to compute the expectations of certain functions under

random fields. In the application discussed by Della Pietra, Della Pietra, and Lafferty

(representing English orthographic constraints), Gibbs sampling can be used to estimate

the needed expectations. The fact that attribute-value grammars generate constrained lan-

guages makes Gibbs sampling inapplicable, but I show that sampling can be done using

the more general Metropolis-Hastings algorithm.

1. Introduction

Stochastic versions of regular grammars and context-free grammars have received a great

deal of attention in computational linguistics for the last several years, and basic tech-

niques of stochastic parsing and parameter estimation have been known for decades.

However, regular and context-free grammars are widely deemed linguistically inadequate;

standard grammars in computational linguistics are attribute-value (AV) grammars of

some variety. Before the advent of statistical methods, regular and context-free grammars

were considered too inexpressive for serious consideration, and even now the reliance on

stochastic versions of the less-expressive grammars is often seen as an expedient necessi-

tated by the lack of an adequate stochastic version of attribute-value grammars.

Proposals have been made for extending stochastic models developed for the regular

⁄ AT&T Laboratories, Rm. A216, 180 Park Avenue, Florham Park, NJ 07932



Computational Linguistics Volume 0, Number 0

and context-free cases to grammars with constraints.1 (Brew, 1995) sketches a probabilis-

tic version of Head-Driven Phrase Structure Grammar (HPSG). He proposes a stochastic

process for generating attribute-value structures, that is, directed acyclic graphs (dags).

A dag is generated starting from a single node labelled with the (unique) most general

type. Each type S has a set of maximal subtypes T1; : : : ; Tm. To expand a node labelled S,

one chooses a maximal subtype T stochastically. One then considers equating the current

node with other nodes of type T , making a stochastic yes/no decision for each. Equating

two nodes creates a re-entrancy. If the current node is equated with no other node, one

proceeds to expand it. Each maximal type introduces types U1; : : : ; Un, corresponding to

values of attributes; one creates a child node for each introduced type, and then expands

each child in turn. A limitation of this approach is that it permits one to specify only

the average rate of re-entrancies; it does not permit one to specify more complex context

dependencies.

(Eisele, 1994) takes a logic-programming approach to constraint grammars. He as-

signs probabilities to proof trees by attaching parameters to logic program clauses. He

presents the following logic program as an example:

1. p(X,Y,Z) ˆ1 q(X,Y), r(Y,Z).

2. q(a,b) ˆ0:4 .

3. q(X,c) ˆ0:6 .

4. r(b,d) ˆ0:5 .

5. r(X,e) ˆ0:5 .

The probability of a proof tree is defined to be proportional to the product of the proba-

bilities of clauses used in the proof. Normalization is necessary, because some derivations

lead to invalid proof trees: for example, the derivation

1 I confine my discussion here to Brew and Eisele because they aim to describe parametric models of
probability distributions over the languages of constraint-based grammars, and to estimate the
parameters of those models. Other authors have assigned weights or preferences to constraint-based
grammars but not discussed parameter estimation. One approach of the latter sort that I find of
particular interest is that of Stefan Riezler (Riezler, 1996), who describes a weighted logic for
constraint-based grammars that characterizes the languages of the grammars as fuzzy sets. This
interpretation avoids the need for normalization that Brew and Eisele face, though parameter
estimation still remains to be addressed.

2



Abney Stochastic Attribute-Value Grammars

p(X,Y,Z)
by 1¡̂ q(X,Y) r(Y,Z)

by 3¡̂ r(c,Z) : Y=c
by 4¡̂ : Y=c b=c Z=d

is invalid because of the illegal assignment b = c.

Both Brew and Eisele associate weights with analogues of rewrite rules. In Brew’s

case, we can view type expansion as a stochastic choice from a finite set of rules of form

X ! »i, where X is the type to expand and each »i is a sequence of introduced child

types. A re-entrancy decision is a stochastic choice between two rules, X ! yes and

X ! no, where X is the type of the node being considered for re-entrancy. In Eisele’s

case, expanding a goal term can be viewed as a stochastic choice among a finite set of

rules X ! »i, where X is the predicate of the goal term and each »i is a program clause

whose head has predicate X. The parameters of the models are essentially weights on

such rules, representing the probability of choosing »i when making a choice of type X.

In these terms, Brew and Eisele propose estimating parameters as the empirical

relative frequency of the corresponding rules. That is, the weight of the rule X ! »i is

obtained by counting the number of times X rewrites as »i in the training corpus, divided

by the total number of times X is rewritten in the training corpus. For want of a standard

term, let us call these estimates Empirical Relative Frequency (ERF) estimates. To deal

with incomplete data, both Brew and Eisele appeal to the Expectation-Maximization

(EM) algorithm, applied however to ERF rather than maximum likelihood estimates.

Under certain independence conditions, ERF estimates are maximum likelihood esti-

mates. Unfortunately, these conditions are violated when there are context dependencies

of the sort found in attribute-value grammars, as will be shown below. As a consequence,

applying the ERF method to attribute-value grammars does not generally yield max-

imum likelihood estimates. This is true whether one uses EM or not—a method that

yields the “wrong” estimates on complete data does not improve when EM is used to

extend the method to incomplete data.

3



Computational Linguistics Volume 0, Number 0

Eisele identifies an important symptom that something is amiss with ERF estimates:

the probability distribution over proof trees that one obtains does not agree with the

frequency of proof trees in the training corpus. Eisele recognizes that this problem arises

only where there are context dependencies.

Fortunately, solutions to the context-dependency problem have been described (and

indeed are currently enjoying a surge of interest) in statistics, machine learning, and

statistical pattern recognition, particularly image processing. The models of interest are

known as random fields. Random fields can be seen as a generalization of Markov chains

and stochastic branching processes. Markov chains are stochastic processes correspond-

ing to regular grammars and random branching processes are stochastic processes cor-

responding to context-free grammars. The evolution of a Markov chain describes a line,

in which each stochastic choice depends only on the state at the immediately preceding

time-point. The evolution of a random branching process describes a tree in which a finite-

state process may spawn multiple child processes at the next time-step, but the number

of processes and their states depend only on the state of the unique parent process at the

preceding time-step. In particular, stochastic choices are independent of other choices at

the same time-step: each process evolves independently. If we permit re-entrancies, that

is, if we permit processes to re-merge, we generally introduce context-sensitivity. In order

to re-merge, processes must be “in synch,” which is to say, they cannot evolve in complete

independence of one another. Random fields are a particular class of multi-dimensional

random processes, that is, processes corresponding to probability distributions over an

arbitrary graph. The theory of random fields can be traced back to (Gibbs, 1902); indeed,

the probability distributions involved are known as Gibbs distributions.

To my knowledge, the first application of random fields to natural language was

(Mark et al., 1992). The problem of interest was how to combine a stochastic context-

free grammar with n-gram language models. In the resulting structures, the probability

4



Abney Stochastic Attribute-Value Grammars

of choosing a particular word is constrained simultaneously by the syntactic tree in which

it appears and the choices of words at the n preceding positions. The context-sensitive

constraints introduced by the n-gram model are reflected in re-entrancies in the structure

of statistical dependencies, e.g.:

was

no response

VP

NP

S

there

NP

In this diagram, the choice of label on a node z with parent x and preceding word y is

dependent on the label of x and y, but conditionally independent of the label on any

other node.

(Della Pietra, Della Pietra, and Lafferty, 1995, henceforth, DD&L) also apply random

fields to natural language processing. The application they consider is the induction of

English orthographic constraints—inducing a grammar of possible English words. DD&L

describe an algorithm called Improved Iterative Scaling (IIS) for selecting informative

features of words to construct a random field, and for setting the parameters of the field

optimally for a given set of features, to model an empirical word distribution.

It is not immediately obvious how to use the IIS algorithm to equip attribute-value

grammars with probabilities. In brief, the difficulty is the following. The IIS algorithm

requires the computation of the expectations, under random fields, of certain functions.

In general, computing these expectations involves summing over all configurations (all

possible character sequences, in the orthography application), which is not possible when

the configuration space is large. Instead, DD&L use Gibbs sampling to estimate the

needed expectations.

Gibbs sampling is possible for the application that DD&L consider. A prerequisite

for Gibbs sampling is that the configuration space be closed under relabelling of graph

5



Computational Linguistics Volume 0, Number 0

nodes. In the orthography application, the configuration space is the set of possible

English words, represented as finite linear graphs labelled with ASCII characters. Every

way of changing a label, that is, every substitution of one ASCII character for a different

one, yields a possible English word.

By contrast, the set of graphs admitted by an attribute-value grammar G is highly

constrained. If one changes an arbitrary node label in a dag admitted by G, one does not

necessarily obtain a new dag admitted by G. Hence, Gibbs sampling is not applicable.

However, I will show that a more general sampling method, the Metropolis-Hastings

algorithm, can be used to compute the maximum-likelihood estimate of the parameters

of AV grammars.

2. Stochastic Context-Free Grammars

Let us begin by examining stochastic context-free grammars (SCFGs) and asking why

the natural extension of SCFG parameter estimation to attribute-value grammars fails.

A point of terminology: I will use the term grammar to refer to an unweighted grammar,

be it a context-free grammar or attribute-value grammar. A grammar equipped with

weights (and other periphenalia as necessary) I will refer to as a model. Occasionally I

will also use model to refer to the weights themselves, or the probability distribution they

define.

Throughout we will use the following stochastic context-free grammar for illustrative

purposes. Let us call the underlying grammar G1 and the grammar equipped with weights

as shown, M1:

6



Abney Stochastic Attribute-Value Grammars

1. S ! A A fl1 = 1=2
2. S ! B fl2 = 1=2

3. A ! a fl3 = 2=3
4. A ! b fl4 = 1=3

5. B ! a a fl5 = 1=2
6. B ! b b fl6 = 1=2

(1)

The probability of a given tree is computed as the product of probabilities of rules used

in it. For example:

S

A

a

A

a

β1

β3 β3

(2)

Let x be tree (2) and let q1 be the probability distribution over trees defined by model

M1. Then:

q1(x) = fl1 ¢ fl3 ¢ fl3 =
1

2
¢ 2
3

¢ 2
3
=
2

9

In parsing, we use the probability distribution q1(x) defined by model M1 to dis-

ambiguate: the grammar assigns some set of trees fx1; : : : ; xng to a sentence ¾, and we

choose that tree xi that has greatest probability q1(xi). The issue of efficiently comput-

ing the most-probable parse for a given sentence has been thoroughly addressed in the

literature. The standard parsing techniques can be readily adapted to the random-field

models to be discussed below, so I simply refer the reader to the literature. Instead,

I concentrate on parameter estimation, which for attribute-value grammars cannot be

accomplished by standard techniques.

By parameter estimation we mean determining values for the weights fl. In order

for a stochastic grammar to be useful, we must be able to compute the correct weights,

where by correct weights we mean the weights that best account for a training corpus.

7



Computational Linguistics Volume 0, Number 0

The degree to which a given set of weights accounts for a training corpus is measured

by the similarity between the distribution q(x) determined by the weights fl and the

distribution of trees x in the training corpus.

2.1 The Goodness of a Model

The distribution determined by the training corpus is known as the empirical distri-

bution. For example, suppose we have a training corpus containing twelve trees of the

following four types from L(G1):

S

A

a

A

a

S

A

b

A

b

S

a a

B

S

b b

B

4x 3x2x 3x = 12
p =~ 4/12 2/12 3/12 3/12

x1 x2 x3 x4

c =

(3)

where c(x) is the count of how often the tree (type) x appears in the corpus, and p̃(¢) is

the empirical distribution, defined as:

p̃(x) =
c(x)

N
N =

X
x

c(x)

In comparing a distribution q to the empirical distribution p̃, we shall actually mea-

sure dissimilarity rather than similarity. Our measure for dissimilarity of distributions is

the Kullback-Leibler (KL) divergence, defined as:

D(p̃jjq) =
X

x

p̃(x) ln
p̃(x)

q(x)

The divergence between p̃ and q at point x is the log of the ratio of p̃(x) to q(x). The

overall divergence between p̃ and q is the average divergence, where the averaging is over

tree (tokens) in the corpus; i.e., point divergences ln p̃(x)=q(x) are weighted by p̃(x) and

summed.

8



Abney Stochastic Attribute-Value Grammars

For example, let q1 be, as before, the distribution determined by model M1. The

following table shows q1, p̃, the ratio q1(x)=p̃(x), and the weighted point divergence

p̃(x) ln(p̃(x)=q1(x)). The sum of the fourth column is the KL divergence D(p̃jjq1) between

p̃ and q1. The third column contains q1(x)=p̃(x) rather than p̃(x)=q1(x) so that one can

see at a glance whether q1(x) is too large (> 1) or too small (< 1).

q1 p̃ q1=p̃ p̃ ln(p̃=q1)
x1 2/9 1/3 0.67 0.14
x2 1/18 1/6 0.33 0.18
x3 1/4 1/4 1.00 0.00
x4 1/4 1/4 1.00 0.00

0.32

(4)

The total divergence D(p̃jjq1) = 0:32.

One set of weights is better than another if its divergence from the empirical distribu-

tion is less. For example, let us consider a different set of weights for grammar G1. LetM 0

be G1 with weights (1=2; 1=2; 1=2; 1=2; 1=2; 1=2), and let q0 be the probability distribution

determined by M 0. Then the computation of the KL divergence is as follows:

q0 p̃ q0=p̃ p̃ ln(p̃=q0)
x1 1/8 1/3 0.38 0.33
x2 1/8 1/6 0.75 0.05
x3 1/4 1/4 1.00 0.00
x4 1/4 1/4 1.00 0.00

0.38

The fit for x2 improves, but that is more than offset by a poorer fit for x1. The distribution

q1 is a better distribution than q0, in the sense that q1 is more similar (less dissimilar) to

the empirical distribution than q0 is.

One reason for adopting minimal KL divergence as a measure of goodness is that

minimizing KL divergence maximizes likelihood. The likelihood of distribution q is the

probability of the training corpus according to q:

L(q) =
Q
x in training q(x)

=
Q

x q(x)c(x)

Since log is monotone increasing, maximizing likelihood is equivalent to maximizing log

likelihood:

9



Computational Linguistics Volume 0, Number 0

lnL(q) =
P

x c(x) ln q(x)
= N

P
x p̃(x) ln q(x)

The expression on the right hand side is -1/N times the cross entropy of q with respect

to p̃, hence maximizing log likelihood is equivalent to minimizing cross entropy. Finally,

D(p̃jjq) is equal to the cross entropy of q less the entropy of p̃, and the entropy of p̃ is

constant with respect to q; hence minimizing cross entropy (maximizing likelihood) is

equivalent to minimizing divergence.

2.2 The ERF Method

For stochastic context-free grammars, it can be shown that the ERF method yields the

best model for a given training corpus. First, let us introduce some terminology and

notation. With each rule i in a stochastic context-free grammar is associated a weight fli

and a function fi(x) that returns the number of times rule i is used in the derivation of

tree x. For example, consider tree (2), repeated here for convenience:

S

A

a

A

a

β1

β3 β3

Rule 1 is used once and rule 3 is used twice; accordingly f1(x) = 1, f3(x) = 2, and

fi(x) = 0 for i 2 f2; 4; 5; 6g.

We use the notation p[f ] to represent the expectation of f under probability dis-

tribution p; that is, p[f ] =
P

x p(x)f(x). The ERF method instructs us to choose the

weight fli for rule i proportional to its empirical expectation p̃[fi]. Algorithmically, we

compute the expectation of each rule’s frequency, and normalize among rules with the

same lefthand side.

10



Abney Stochastic Attribute-Value Grammars

To illustrate, let us consider corpus (3) again. The expectation of each rule frequency

fi is a sum of terms p̃(x)fi(x). These terms are shown for each tree, in the following table.

S
!
A
A

S
!
B

A
!
a

A
!
b

B
!
a
a

B
!
b
b

p̃ p̃f1 p̃f2 p̃f3 p̃f4 p̃f5 p̃f6
x1 [S [A a] [A a]] 1/3 1/3 2/3
x2 [S [A b] [A b]] 1/6 1/6 2/6
x3 [S [B a a]] 1/4 1/4 1/4
x4 [S [B b b]] 1/4 1/4 1/4

p̃[f ] = 1/2 1/2 2/3 1/3 1/4 1/4
fl = 1/2 1/2 2/3 1/3 1/2 1/2

For example, in tree x1, rule 1 is used once and rule 3 is used twice. The empirical

probability of x1 is 1/3, so x1’s contribution to p̃[f1] is 1=3 ¢ 1, and its contribution to

p̃[f3] is 1=3 ¢ 2. The weight fli is obtained from p̃[fi] by normalizing among rules with the

same lefthand side. For example, the expected rule frequencies p̃[f1] and p̃[f2] of rules

with lefthand side S already sum to 1, so they are adopted without change as fl1 and fl2.

On the other hand, the expected rule frequencies p̃[f5] and p̃[f6] for rules with lefthand

side B sum to 1/2, not 1, so they are doubled to yield weights fl5 and fl6. It should be

observed that the resulting weights are precisely the weights of model M1.

It can be proven that the ERF weights are the best weights for a given context-

free grammar, in the sense that they define the distribution that is most similar to

the empirical distribution. That is, if fl are the ERF weights (for a given grammar),

defining distribution q, and fl0 defining q0 is any set of weights such that q 6= q0, then

D(p̃jjq) < D(p̃jjq0).

One might expect the best weights to yield D(p̃jjq) = 0, but such is not the case.

We have just seen, for example, that the best weights for grammar G1 yield distribution

q1, yet D(p̃jjq1) = 0:32 > 0. A closer inspection of the divergence calculation (4) reveals

that q1 is sometimes less than p̃, but never greater than p̃. Could we improve the fit

by increasing q1? For that matter, how can it be that q1 is never greater than p̃? As

11



Computational Linguistics Volume 0, Number 0

probability distributions, q1 and p̃ should have the same total mass, namely, one. Where

is the missing mass for q1?

The answer is of course that q1 and p̃ are probability distributions over L(G), but

not all of L(G) appears in the corpus. Two trees are missing, and they account for the

missing mass. These two trees are:

S

A

a

A

b

S

A

b

A

a (5)

Each of these trees has probability 0 according to p̃ (hence they can be ignored in the

divergence calculation), but probability 1=9 according to q1.

Intuitively, the problem is this. The distribution q1 assigns too little weight to trees

x1 and x2, and too much weight to the “missing” trees (5); call them x5 and x6. Yet

exactly the same rules are used in x5 and x6 as are used in x1 and x2. Hence there

is no way to increase the weight for trees x1 and x2, improving their fit to p̃, without

simultaneously increasing the weight for x5 and x6, making their fit to p̃ worse. The

distribution q1 is the best compromise possible.

To say it another way, our assumption that the corpus was generated by a context-

free grammar means that any context dependencies in the corpus must be accidental, the

result of sampling noise. There is indeed a dependency in corpus (3): in the trees where

there are two A’s, the A’s always rewrite the same way. If corpus (3) was generated by

a stochastic context-free grammar, then this dependency is accidental.

This does not mean that the context-free assumption is wrong. If we generate twelve

trees at random from q1, it would not be too surprising if we got corpus (3). More

extremely, if we generate a random corpus of size 1 from q1, it is quite impossible for

the resulting empirical distribution to match the distribution q1. But as the corpus size

12



Abney Stochastic Attribute-Value Grammars

increases, the fit between p̃ and q1 becomes ever better.

3. Attribute-Value Grammars

But what if the dependency in corpus (3) is not accidental? What if we wish to adopt

a grammar that imposes the constraint that both A’s rewrite the same way? We can

impose such a constraint by means of an attribute-value grammar.

We may formalize an attribute-value grammar as a context-free grammar with at-

tribute labels and path equations. An example is the following grammar; let us call it

G2:

1. S ! 1:A 2:A <1 1> = <2 1>
2. S ! 1:B
3. A ! 1:a
4. A ! 1:b
5. B ! 1:a
6. B ! 1:b

(G2)

The following illustrates how a dag is generated from G2.

(a) (b) (c) (d)

1 3 3

S S S

S A

1 2

11

A A

1 2

11

A

a

A

1 2

11

A

a

We begin in (a) with a single node labelled with the start category of G2, namely, S. A

node x is expanded by choosing a rule that rewrites the category of x. In this case, we

choose rule 1 to expand the root node. Rule 1 instructs us to create two children, both

labelled A. The edge to the first child is labelled “1” and the edge to the second child

is labelled “2”. The constraint “<1 1> = <2 1>” indicates that the “1” child of the

“1” child of x is identical to the “1” child of the “2” child of x. We create an unlabelled

node to represent this grandchild of x and direct appropriately labelled edges from the

children, yielding (b).

We proceed to expand the newly introduced nodes. We choose rule 3 to expand the

13



Computational Linguistics Volume 0, Number 0

first “A” node. In this case, a child with edge labelled “1” already exists, so we use it

rather than creating a new one. Rule 3 instructs us to label this child “a”, yielding (c).

Now we expand the second “A” node. Again we choose rule 3. We are instructed to label

the “1” child “a”, but it already has that label, so we do not need to do anything. Finally,

in (d), the only remaining node is the bottommost node, labelled “a”. Since its label is

a terminal category, it does not need to be expanded, and we are done.

Let us back up to (c) again. Here we were free to choose rule 4 instead of rule 3

to expand the righthand “A” node. Rule 4 instructs us to label the “1” child “b”, but

we cannot, inasmuch as it is already labelled “a”. The derivation fails, and no dag is

generated.

The language L(G2) is the set of dags produced by successful derivations, namely:

x1 x2 x3 x4

S

A

a

A

S

A

b

A

S

a

B

S

b

B

(6)

(The edges of the dags should actually be labelled with 1’s and 2’s, but I have suppressed

the edge labels for the sake of perspicuity.)

3.1 AV Grammars and the ERF Method

Now we face the question of how to attach probabilities to grammar G2. The natural

extension of the method we used for context-free grammars is the following. Associate

a weight with each of the six rules of grammar G2. For example, let M2 be the model

consisting of G2 plus weights (fl1; : : : ; fl6) = (1=2; 1=2; 2=3; 1=3; 1=2; 1=2). Let `2(x) be

the weight that M2 assigns to dag x; it is defined to be the product of the weights of

the rules used to generate x. For example, the weight `2(x1) assigned to tree x1 of (6) is

2=9, computed as follows:

14



Abney Stochastic Attribute-Value Grammars

S

A A

a

β1

β3 β3

x =1

Rule 1 is used once and rule 3 is used twice; hence `2(x1) = fl1fl3fl3 = 1=2¢2=3¢2=3 = 2=9.

Observe that `2(x1) = fl1fl
2
3 , which is to say, fl

f1(x1)
1 fl

f3(x1)
3 . Moreover, since fl0 = 1,

it does not hurt to include additional factors fl
fi(x1)
i for those i where fi(x1) = 0. That is,

we can define the dag weight ` corresponding to rule weights fl = (fl1; : : : ; fln) generally

as:

`(x) =

nY

i=1

fl
fi(x)
i

The next question is how to estimate weights. Let us consider what happens when

we use the ERF method. Let us assume a corpus distribution for the dags (6) analogous

to the distribution in (3):

x1 x2 x3 x4
p̃ = 1=3 1=6 1=4 1=4

(7)

Using the ERF method, we estimate rule weights as follows:

p̃ p̃f1 p̃f2 p̃f3 p̃f4 p̃f5 p̃f6
x1 1/3 1/3 2/3
x2 1/6 1/6 2/6
x3 1/4 1/4 1/4
x4 1/4 1/4 1/4

p̃[f ] = 1/2 1/2 2/3 1/3 1/4 1/4
fl = 1/2 1/2 2/3 1/3 1/2 1/2

(8)

This table is identical to the one given earlier in the context-free case. We arrive at the

same weights M2 we considered above, defining dag weights `2(x).

3.2 Why the ERF Method Fails

But at this point a problem arises: `2 is not a probability distribution. Unlike in the

context-free case, the four dags in (6) constitute the entirety of L(G). This time, there

15



Computational Linguistics Volume 0, Number 0

are no missing dags to account for the missing probability mass.

There is an obvious “fix” for this problem: we can simply normalize `2. We might

define the distribution q for an AV grammar with weight function ` as:

q(x) =
1

Z
`(x)

where Z is the normalizing constant:

Z =
X

x2L(G)

`(x)

In particular, for `2, we have Z = 2=9 + 1=18 + 1=4 + 1=4 = 7=9. Dividing `2 by 7/9

yields the ERF distribution:

x1 x2 x3 x4
q2(x) = 2=7 1=14 9=28 9=28

On the face of it, then, we can transplant the methods we used in the context-free case

to the AV case and nothing goes wrong. The only problem that arises (` not summing

to one) has an obvious fix (normalization).

However, something has actually gone very wrong. The ERF method yields the best

weights only under certain conditions that we inadvertently violated by changing L(G)

and re-apportioning probability via normalization. In point of fact, we can easily see that

the ERF weights (8) are not the best weights for our example grammar. Consider the

alternative model M⁄ given in (9), defining probability distribution q⁄:

S ! A A S ! B A ! a A ! b B ! a B ! b
3+2

p
2

6+2
p
2

3
6+2

p
2

p
2

1+
p
2

1
1+

p
2

1
2

1
2

(9)

These weights are proper, in the sense that weights for rules with the same lefthand side

sum to one. The reader can verify that `⁄ sums to Z = 3+
p
2

3 and that q⁄ is:

x1 x2 x3 x4
q⁄(x) = 1=3 1=6 1=4 1=4

16



Abney Stochastic Attribute-Value Grammars

That is, q⁄ = p̃. Comparing q2 (the ERF distribution) and q⁄ to p̃, we observe that

D(p̃jjq2) = 0:07 but D(p̃jjq⁄) = 0.

In short, in the AV case, the ERF weights do not yield the best weights. This means

that the ERF method does not converge to the correct weights as the corpus size in-

creases. If there are genuine dependencies in the grammar, the ERF method converges

systematically to the wrong weights. Fortunately, there are methods that do converge to

the right weights. These are methods that have been developed for random fields.

4. Random Fields

A random field defines a probability distribution over a set of labelled graphs Ω called

configurations. In our case, the configurations are the dags generated by the grammar,

i.e., Ω = L(G). The weight assigned to a configuration is the product of the weights

assigned to selected features of the configuration. We use the notation:

`(x) =
Y

i

fl
fi(x)
i

where fli is the weight for feature i and fi(¢) is its frequency function, that is, fi(x) is the

number of times that feature i occurs in configuration x. (For most purposes, a feature

can be identified with its frequency function; I will not always make a careful distinction

between them.)

I use the term feature here as it is used in the machine learning and statistical

pattern recognition literature, not as in the constraint grammar literature, where feature

is synonymous with attribute. In my usage, dag edges are labelled with attributes, not

features. Features are rather like geographic features of dags: a feature is some larger or

smaller piece of structure that occurs—possibly at more than one place—in a dag.

The probability of a configuration (that is, a dag) is proportional to its weight, and

is obtained by normalizing the weight distribution.

17



Computational Linguistics Volume 0, Number 0

q(x) = 1
Z

`(x) Z =
P

x2Ω `(x)

If we identify the features of a configuration with local trees—equivalently, with

applications of rewrite rules—the random field model is almost identical to the model

we considered in the previous section. There are two important differences. First, we no

longer require weights to sum to one for rules with the same lefthand side. Second, the

model does not require features to be identified with rewrite rules. We use the grammar

to define the set of configurations Ω = L(G), but in defining a probability distribution

over L(G), we can choose features of dags however we wish.

Let us consider an example. Let us continue to assume grammar G2 generating

language (6), and let us continue to assume the empirical distribution (7). But now rather

than taking rule applications to be features, let us adopt the following two features:

1. 2.
A

a
1 B

For purpose of illustration, take feature 1 to have weight fl1 =
p
2 and feature 2 to have

weight fl2 = 3=2. The functions f1 and f2 represent the frequencies of features 1 and 2,

respectively:

S

A

a

A1
1

S

A

b

A

S

a

B2

S

b

B2

f1 = 2 0 0 0
f2 = 0 0 1 1

` =
p
2 ¢ p

2 1 3/2 3/2 Z = 6
q = 1/3 1/6 1/4 1/4

We are able to exactly recreate the empirical distribution using fewer features than before.

Intuitively, we need only use as many features as are necessary to distinguish among trees

that have different empirical probabilities.

18



Abney Stochastic Attribute-Value Grammars

This added flexibility is welcome, but it does make parameter estimation more in-

volved. Now we must not only choose values for weights, we must also choose the features

that weights are to be associated with. We would like to do both in a way that permits

us to find the best model, in the sense of the model that minimizes the Kullback-Leibler

distance with respect to the empirical distribution. The IIS algorithm (Della Pietra, Della

Pietra, and Lafferty, 1995) provides a method to do precisely that.

5. Field Induction

In outline, the IIS algorithm is as follows:

1.Start (t = 0) with the null field, containing no features.

2.Feature Selection. Consider every feature that might be added to field Mt

and choose the best one.

3.Weight Adjustment. Readjust weights for all features. The result is field

Mt+1.

4.Iterate until the field cannot be improved.

For the sake of concreteness, let us take features to be labelled subdags. In step

2 of the algorithm we do not consider every conceivable labelled subdag, but only the

atomic (i.e., single-node) subdags and those complex subdags that can be constructed

by combining features already in the field or by combining a feature in the field with

some atomic feature. We also limit our attention to features that actually occur in the

training corpus.

In our running example, the atomic features are:

S A B a b

Features can be combined by adding connecting arcs. For example:

19



Computational Linguistics Volume 0, Number 0

+ =A a
A

a

S

A
S A+ =

S

A
+ =A

S

A A

5.1 The Null Field

Field induction begins with the null field. With the corpus we have been assuming, the

null field takes the following form.

S

A

a

A

S

A

b

A

S

a

B

S

b

B

`(x) = 1 1 1 1 Z = 4
q(x) = 1/4 1/4 1/4 1/4

No dag x has any features, so `(x) =
Q

i fl
fi(x)
i is a product of zero terms, and hence has

value 1. As a result, q is the uniform distribution. The Kullback-Leibler divergenceD(p̃jjq)

is 0.03. The aim of feature selection is to choose a feature that reduces this divergence

as much as possible.

The astute reader will note that there is a problem with the null field if L(G) is

infinite. Namely, it is not possible to have a uniform probability mass distribution over

an infinite set. If each dag in an infinite set of dags is assigned a constant nonzero

probability †, then the total probability is infinite, no matter how small † is. There are

a couple of ways of dealing with the problem. The approach that DD&L adopt is to

assume a consistent prior distribution p(k) over graph sizes k, and a family of random

fields qk representing the conditional probability q(xjk); the probability of a tree is then

p(k)q(xjk). All the random fields have the same features and weights, differing only in

their normalizing constants.

I will take a somewhat different approach here. As sketched at the beginning of section

3, we can generate dags from an AV grammar much as proposed by Brew and Eisele.

If we ignore failed derivations, the process of dag generation is completely analogous to

the process of tree generation from a stochastic CFG—indeed, in the limiting case in

which none of the rules contain constraints, the grammar is a CFG. To obtain an initial

20



Abney Stochastic Attribute-Value Grammars

distribution, we associate a weight with each rule, the weights for rules with a common

lefthand side summing to one. The probability of a dag is proportional to the product of

weights of rules used to generate it. (Renormalization is necessary because of the failed

derivations.) We estimate weights using the ERF method: we estimate the weight of a

rule as the relative frequency of the rule in the training corpus, among rules with the

same lefthand side.

The resulting initial distribution (the ERF distribution) is not the maximum like-

lihood distribution, as we know. But it can be taken as a useful first approximation.

Intuitively, we begin with the ERF distribution and construct a random field to take ac-

count of context-dependencies that the ERF distribution fails to capture, incrementally

improving the fit to the empirical distribution.

In this framework, a model consists of: (1) An AV grammar G whose purpose is to

define a set of dags L(G). (2) A set of initial weights µ attached to the rules of G. The

weight of a dag is the product of weights of rules used in generating it. Discarding failed

derivations and renormalizing yields the initial distribution p0(x). (3) A set of features

f1; : : : ; fn with weights fl1; : : : ; fln to define the field distribution q(x) = 1
Z

p0(x)
Q

i fl
fi(x)
i .

5.2 Feature Selection

At each iteration, we select a new feature f by considering all atomic features, and all

complex features that can be constructed from features already in the field. Holding the

weights constant for all old features in the field, we choose the best weight fl for f (how

fl is chosen will be discussed shortly), yielding a new distribution qfl;f . The score for

feature f is the reduction it permits in D(p̃jjqold), where qold is the old field. That is, the

score for f is D(p̃jjqold) ¡ D(p̃jjqfl;f ). We compute the score for each candidate feature

and add to the field that feature with the highest score.

To illustrate, consider the two atomic features ‘a’ and ‘B’. Given the null field as old

21



Computational Linguistics Volume 0, Number 0

field, the best weight for ‘a’ is fl = 7=5, and the best weight for ‘B’ is fl = 1. This yields

q and D(p̃jjf) as follows:

S

A

a

A

S

A

b

A

S

a

B

S

b

B

p̃ 1/3 1/6 1/4 1/4

`a 7/5 1 7/5 1 Z = 24=5
qa 7/24 5/24 7/24 5/24

p̃ ln p̃
qa

0.04 ¡0:04 ¡0:04 0:05 D = 0:01

`B 1 1 1 1 Z = 4
qB 1/4 1/4 1/4 1/4

p̃ ln p̃
qB

0.10 ¡0:07 0 0 D = 0:03

The better feature is ‘a’, and ‘a’ would be added to the field if these were the only two

choices.

Intuitively, ‘a’ is better than ‘B’ because ‘a’ permits us to distinguish the set fx1; x3g

from the set fx2; x4g; the empirical probability of the former is 1=3+1=4 = 7=12 whereas

the empirical probability of the latter is 5=12. Distinguishing these sets permits us to

model the empirical distribution better (since the old field assigns them equal probability,

counter to the empirical distribution). By contrast, the feature ‘B’ distinguishes the set

fx1; x2g from fx3; x4g. The empirical probability of the former is 1=3 + 1=6 = 1=2 and

the empirical probability of the latter is also 1=2. The old field models these probabilities

exactly correctly, so making the distinction does not permit us to improve on the old

field. As a result, the best weight we can choose for ‘B’ is 1, which is equivalent to not

having the feature ‘B’ at all.

5.3 Selecting the Initial Weight

DD&L show that there is a unique weight fl̂ that maximizes the score for a new feature

f (provided that the score for f is not constant for all weights). Writing qfl for the

distribution that results from assigning weight fl to feature f , fl̂ is the solution to the

equation

22



Abney Stochastic Attribute-Value Grammars

qfl [f ] = p̃[f ] (10)

Intuitively, we choose the weight such that the expectation of f under the resulting new

field is equal to its empirical expectation.

Solving equation (10) for fl is easy if L(G) is small enough to enumerate. Then the

sum over L(G) that is implicit in qfl [f ] can be expanded out, and solving for fl is simply

a matter of arithmetic. Things are a bit trickier if L(G) is too large to enumerate. DD&L

show that we can solve equation (10) if we can estimate qold[f = k] for k from 0 to the

maximum value of f in the training corpus. (See appendix 1 for details.)

We can estimate qold[f = k] by means of random sampling. The idea is actually

rather simple: to estimate how often the feature appears in “the average dag”, we generate

a representative mini-corpus from the distribution qold and count. That is, we generate

dags at random in such a way that the relative frequency of dag x is qold(x) (in the

limit), and we count how often the feature of interest appears in dags in our generated

mini-corpus.

The application that DD&L consider is the induction of English orthographic con-

straints, that is, inducing a field that assigns high probability to “English-sounding”

words and low probability to non-English-sounding words. For this application, Gibbs

sampling is appropriate. Gibbs sampling does not work for the application to AV gram-

mars, however. Fortunately, there is an alternative random sampling method we can use:

Metropolis-Hastings sampling. We will discuss the issue in some detail shortly.

5.4 Readjusting Weights

When a new feature is added to the field, the best value for its initial weight is chosen,

but the weights for the old features are held constant. In general, however, adding the

new feature may make it necessary to readjust weights for all features. The second half

23



Computational Linguistics Volume 0, Number 0

of the IIS algorithm involves finding the best weights for a given set of features.

The method is very similar to the method for selecting the initial weight for a new

feature. Let (fl1; : : : ; fln) be the old weights for the features. We wish to compute “incre-

ments” (–1; : : : ; –n) to determine a new field with weights (–1fl1; : : : ; –nfln). Consider the

equation

qold[–
f#
i fi] = p̃[fi] (11)

where f#(x) =
P

i fi(x) is the total number of features of dag x. The reason for the

factor –f#
i is a bit involved. Very roughly, we would like to choose weights so that the

expectation of fi under the new field is equal to p̃[fi]. Now qnew(x) is:

qnew(x) =
1
Z

p0(x)
Q

j(–jflj)
fj(x)

= 1
Z–

qold(x)
Q

j –
fjx
j

where we factor Z as Z–Zfl , for Zfl the normalization constant in qold. Hence, qnew[fi] =

qold[
1

Z–
fi

Q
j –

fjx
j ]. Now there are two problems with this expression: it requires us to

compute Z–, which we are not able to do, and it requires us to determine weights –j for

all the features simultaneously, not just the weight –i for feature i. We might consider ap-

proximating qnew[fi] by ignoring the normalization factor and assuming that all features

have the same weight as feature i. Since
Q

j –
fj(x)
i = –

f#(x)
i , we arrive at the expression

on the lefthand side of equation (11).

One might expect the approximation just described to be rather poor, but it is proven

in (Della Pietra, Della Pietra, and Lafferty, 1995) that solving equation (11) for –i (for

each i) and setting the new weight for feature i to –ifli is guaranteed to improve the

model. This is the real justification for equation (11), and the reader is referred to (Della

Pietra, Della Pietra, and Lafferty, 1995) for details.

Solving (11) yields improved weights, but it does not necessarily immediately yield

the globally best weights. We can obtain the globally best weights by iterating. Set

24



Abney Stochastic Attribute-Value Grammars

fli ˆ –ifli, for all i, and solve equation (11) again. Repeat until the weights no longer

change.

As with equation (10), solving equation (11) is straightforward if L(G) is small

enough to enumerate, but not if L(G) is large. In that case, we must use random sampling.

We generate a representative mini-corpus and estimate expectations by counting in the

mini-corpus. (See appendix 2.)

5.5 Random Sampling

We have seen that random sampling is necessary both to set the initial weight for features

under consideration and to adjust all weights after a new feature is adopted. Random

sampling involves creating a corpus that is representative of a given model distribution

q(x). To take a very simple example, a fair coin can be seen as a method for sampling

from the distribution q in which q(H) = 1=2, q(T ) = 1=2. Saying that a corpus is

representative is actually not a comment about the corpus itself but the method by

which it was generated: a corpus representative of distribution q is one generated by a

process that samples from q. Saying that a process M samples from q is to say that

the empirical distributions of corpora generated by M converge to q in the limit. For

example, if we flip a fair coin once, the resulting empirical distribution over (H; T ) is

either (1; 0) or (0; 1), not the fair-coin distribution (1=2; 1=2). But as we take larger and

larger corpora, the resulting empirical distributions converge to (1=2; 1=2).

An advantage of SCFGs that random fields lack is the transparent relationship be-

tween an SCFG defining a distribution q and a sampler for q. We can sample from q by

performing stochastic derivations: each time we have a choice among rules expanding a

category X, we choose rule X ! »i with probability fli, where fli is the weight of rule

X ! »i.

Now we can sample from the initial distribution p0 by performing stochastic deriva-

25



Computational Linguistics Volume 0, Number 0

tions. At the beginning of section 3, we sketched how to generate dags from an AV

grammar G via nondeterministic derivations. We defined the initial distribution in terms

of weights µ attached to the rules of G. We can convert the nondeterministic deriva-

tions discussed at the beginning of section 3 into stochastic derivations by choosing rule

X ! »i with probability µi when expanding a node labelled X. Some derivations fail,

but throwing away failed derivations has the effect of renormalizing the weight function,

so that we generate a dag x with probability p0(x), as desired.

The Metropolis-Hastings algorithm provides us with a means of converting the sam-

pler for the initial distribution p0(x) into a sampler for the field distribution q(x). Gener-

ally, let p(¢) be a distribution for which we have a sampler. We wish to construct a sample

x1; : : : ; xN from a different distribution q(¢). Assume that items x1; : : : ; xn are already

in the sample, and we wish to choose xn+1. The sampler for p(¢) proposes a new item

y. We do not simply add y to the sample—that would give us a sample from p(¢)—but

rather we make a stochastic decision whether to accept the proposal y or reject it. If we

accept y, it is added to the sample (xn+1 = y), and if we reject y, then xn is repeated

(xn+1 = xn).

The acceptance decision is made as follows. If p(y) > q(y), then y is overrepresented

among the proposals. We can quantify the degree of overrepresentation as p(y)=q(y). The

idea is to reject y with a probability corresponding to its degree of overrepresentation.

However, we do not consider the absolute degree of overrepresentation, but rather the

degree of overrepresentation relative to xn. (If y and xn are equally overrepresented,

there is no reason to reject y in favor of xn.) That is, we consider the value

r =
p(y)=q(y)

p(xn)=q(xn)
=

p(y)q(xn)

p(xn)q(y)

If r • 1, then y is underrepresented relative to xn, and we accept y with probability one.

If r > 1, then we accept y with a probability that diminishes as r increases: specifically,

26



Abney Stochastic Attribute-Value Grammars

with probability 1=r. In brief, the acceptance probability of y is A(yjxn) = min(1; 1=r).

It can be shown that proposing items with probability p(¢) and accepting them with

probability A(¢jxn) yields a sampler for q(¢). (See e.g. (Winkler, 1995)).2

The acceptance probability A(yjxn) reduces in our case to a particularly simple form.

If r < 1 then A(yjx) = 1. Otherwise, writing `(x) for the “field weight”
Q

i fl
fi(x)
i , we

have:

A(yjxn) =
Z¡1`(y)p0(y)p0(xn)

Z¡1`(xn)p0(xn)p0(y)

= `(y)=`(xn)
(12)

6. Final Remarks

In summary, we cannot simply transplant CF methods to the AV grammar case. In par-

ticular, the ERF method yields correct weights only for SCFGs, not for AV grammars.

We can define a probabilistic version of AV grammars with a correct weight-selection

method by going to random fields. Feature selection and weight adjustment can be ac-

complished using the IIS algorithm. In feature selection, we need to use random sampling

to find the initial weight for a candidate feature, and in weight adjustment we need to

use random sampling to solve the weight equation. The random sampling method that

DD&L used is not appropriate for sets of dags, but we can solve that problem by using

the Metropolis-Hastings method instead.

2 The Metropolis-Hastings acceptance probability is usually given in the form

A(yjx) = min
‡
1;

…(y)g(y; x)

…(x)g(x; y)

·

in which … is the distribution we wish to sample from (q, in our notation) and g(x; y) is the
proposal probability: the probability that the input sampler will propose y if the previous
configuration was x. The case we consider is a special case in which the proposal probability is
independent of x: the proposal probability g(x; y) is, in our notation, p(y).
The original Metropolis algorithm is also a special case of the Metropolis-Hastings algorithm, in

which the proposal probability is symmetric, that is, g(x; y) = g(y; x). The acceptance function then
reduces to min(1; …(y)=…(x)), which is min(1; q(y)=q(x)) in our notation. I mention this only to
point out that it is a different special case. Our proposal probability is not symmetric, but rather
independent of the previous configuration, and though our acceptance function reduces to a form
(12) that is similar to the original Metropolis acceptance function, it is not the same: in general,
`(y)=`(x) 6= q(y)=q(x).

27



Computational Linguistics Volume 0, Number 0

Open questions remain. First, random sampling is notorious for being slow, and it

remains to be shown whether the approach proposed here will be practicable. I expect

practicability to be quite sensitive to the choice of grammar—the more the grammar’s

distribution diverges from the initial context-free approximation, the more features will

be necessary to “correct” it, and the more random sampling will be called on.

A second issue is incomplete data. The approach described here assumes complete

data (a parsed training corpus). Fortunately, an extension of the method to handle in-

complete data (unparsed training corpora) is described in (Riezler, 1997), and I refer

readers to that paper.

As a closing note, it should be pointed out explicitly that the random field techniques

described here can be profitably applied to context-free grammars, as well. As Stanley

Peters nicely put it, there is a distinction between possibilistic and probabilistic context-

sensitivity. Even if the language described by the grammar of interest—that is, the set

of possible trees—is context-free, there may well be context-sensitive statistical depen-

dencies. Random fields can be readily applied to capture such statistical dependencies

whether or not L(G) is context-sensitive.

Acknowledgments

This work has greatly profited from the
comments, criticism, and suggestions of a
number of people, including Yoav Freund,
John Lafferty, Stanley Peters, Hans
Uszkoreit, and members of the audience at
talks I gave at Saarbrücken and Tübingen.
Michael Miller and Kevin Mark introduced
me to random fields as a way of dealing
with context-sensitivities in language,
planting the idea that led (much later) to
this paper. Finally, I would especially like to
thank Marc Light and Stefan Riezler for
extended discussions of the issues addressed
here and helpful criticism of my first
attempts to present this material.
All responsibility for flaws and errors of
course remains with me.

References

Brew, Chris. 1995. Stochastic HPSG. In

Proceedings of EACL-95.

Della Pietra, Stephen, Vincent Della Pietra,
and John Lafferty. 1995. Inducing
features of random fields. tech report
CMU-CS-95-144, CMU.

Eisele, Andreas. 1994. Towards
probabilistic extensions of
constraint-based grammars. Technical
Report Deliverable R1.2.B, DYANA-2.

Gibbs, W. 1902. Elementary principles of
statistical mechanics. Yale University
Press, New Haven, CT.

Mark, Kevin, Michael Miller, Ulf
Grenander, and Steve Abney. 1992.
Parameter estimation for constrained
context-free language models. In
Proceedings of the Fifth Darpa Workshop
on Speech and Natural Language, San
Mateo, CA. Morgan Kaufman.

Riezler, Stefan. 1996. Quantitative
constraint logic programming for

28



Abney Stochastic Attribute-Value Grammars

weighted grammar applications. Talk
given at LACL, September.

Riezler, Stefan. 1997. Probabilistic
Constraint Logic Programming.
Arbeitspapiere des
Sonderforschungsbereichs 340, Bericht Nr.
117, Universität Tübingen.

Winkler, Gerhard. 1995. Image Analysis,
Random Fields and Dynamic Monte
Carlo Methods. Springer.

A. Initial Weight Estimation

In the feature selection step, we choose

an initial weight fl for each candidate fea-

ture f so as to maximize the gain G =

D(p̃jjqold) ¡ D(p̃jjqf;fl) of adding f to the

field. It is actually more convenient to con-

sider log weights fi = lnfl. For a given fea-

ture f , the log weight fî that maximizes

gain is the solution to the equation:

qfi[f ] = p̃[f ]

where qfi is the distribution that results

from adding f to the field with log weight

fi. This equation can be solved using New-

ton’s method. Define

F (fi) = p̃[f ]¡ qfi[f ] (13)

To find the value of fi for which F (fi) = 0,

we begin at a convenient point fi0 (the

“null” weight fi0 = 0 recommends itself)

and iteratively compute:

fit+1 = fit ¡ F (fit)

F 0(fit)
(14)

(Della Pietra, Della Pietra, and Lafferty,

1995) show that F 0(fit) is equal to the

negative of the variance of f under the

new field, which I will write ¡Vfi[f ].

To compute the iteration (14) we need

to be able to compute F (fit) and F 0(fit).

For F (fit) we require p̃[f ] and qfi[f ], and

F 0(fit) can be expressed as qfi[f ]
2¡qfi[f

2].

p̃[f ] is simply the average value of f in the

training corpus. The remaining terms are

all of the form qfi[f
r]. We can re-express

this expectation in terms of the old field

qold:

qfi[f
r] =

P
x fr(x)qfi(x)

=

P
x

fr(x)efif(x)qold(x)P
x

efif(x)qold(x)

=
qold[f

refif ]

qold[e
fif ]

The expectations qold[f
refif ] can be ob-

tained by generating a random sample (z1; : : : ; zN )

of size N from qold and computing the av-

erage value of frefif . That is, qold[f
refif ] …

(1=N)sr(fi), where:

sr(fi) =
P

k fr(zk)e
fif(zk)

=
P

u countk[f(zk) = u]urefiu

This yields:

29



Computational Linguistics Volume 0, Number 0

qfi[f
r] =

sr(fi)

s0(fi)

and the Newton iteration (14) reduces to:

fit+1 = fit +
s20(fit)p̃[f ]¡ s0(fit)s1(fit)

s0(fit)s2(fit)¡ s1(fit)2

To compare candidates, we also need

to know the gain D(p̃jjqold)¡ D(p̃jjqfî) for

each candidate. This can be expressed as

follows (Della Pietra, Della Pietra, and

Lafferty, 1995):

G(f; fî) = p̃[f ] ln fî ¡ ln qold[e
fîf ]

… p̃[f ] ln fî ¡ ln s0(fî) + lnN

Putting everything together, the al-

gorithm for feature selection has the fol-

lowing form. The array E[f ] is assumed

to have been initialized with the empiri-

cal expectations p̃[f ].

procedure SelectFeature () begin

Fill array C[f; u] = countk[f(zk) = u]

by sampling from old field

Ĝ ˆ 0, g ˆ none

for each f in candidates do

fi ˆ 0

until fi is accurate enough do

s0 ˆ s1 ˆ s2 ˆ 0

for u from 0 to umax do

x ˆ C[f; u]efiu

s0 ˆ s0 + x

s1 ˆ s0 + xu

s2 ˆ s0 + xu2

end

fi ˆ fi+
s2

0E[f ]¡s0s1

s0s2¡s2
1

end

G ˆ fiE[f ]¡ ln s0 + lnN

if G > Ĝ then Ĝ ˆ G; g ˆ f; fî ˆ fi

end

return g; fî; Ĝ

end

B. Adjusting Field Weights

The procedure for adjusting field weights

has much the same structure as the proce-

dure for choosing initial weights. In terms

of log weights, we wish to compute incre-

ments (–1; : : : ; –n) such that the new field,

with log weights (fi1 + –1; : : : ; fin + –n)

has a lower divergence than the old field

(fi1; : : : ; fin). We choose each –i as the so-

lution to the equation:

p̃[fi] = qold[fie
–if# ]

30



Abney Stochastic Attribute-Value Grammars

Again, we use Newton’s method. We wish

to find – such that Fi(–) = 0, where:

Fi(–) = p̃[fi]¡ qold[fie
–f# ]

As (Della Pietra, Della Pietra, and Laf-

ferty, 1995) show, the first derivative is:

F 0
i (–) = ¡qold[fif#e–f# ]

We see that the expectations we need to

compute by sampling from qold are of form

qold[fif
r
#e–f# ]. We generate a random sam-

ple (z1; : : : ; zN ) and define:

sr(i; –) =
P

k fi(zk)f#(zk)
re–f#(zk)

=
P

m

P
u countk[fi(zk) = u ^ f#(zk) = m]umre–m

=
P

m mre–m
P

kjf#(zk)=m fi(zk)

As we generate the sample we update the

array C[i; m] =
P

kjf#(zk)=m fi(zk). We

estimate qold[fif
r
#e–f# ] as the average value

of fif
r
#e–f# in the sample, namely, (1=N)sr(i; –).

This permits us to compute Fi(–) and F 0
i (–).

The resulting Newton iteration is:

–t+1 = –t +
Np̃[fi]¡ s0(i; –t)

s1(i; –)

The estimation procedure is:

procedure AdjustWeights (fi1; : : : ; fin) begin

until the field converges do

Fill array C[i; m]

by sampling from qfi

for i from 1 to n

– ˆ 0

until – is sufficiently accurate do

s0 ˆ s1 ˆ 0

for m from 0 to mmax do

x ˆ C[i; m]e–m

s0 ˆ s0 + x

s1 ˆ s1 + xm

end

– ˆ – + NE[fi]¡s0

s1

end

fii ˆ fii + –

end

end

return (fi1; : : : ; fin)

end

31


